首页> 外文会议>Annual Northeast Bioengineering Conference >A Novel Inductive Biphasic Proximal Humerus Internal Fracture Fixator
【24h】

A Novel Inductive Biphasic Proximal Humerus Internal Fracture Fixator

机译:新型电感性双相近端肱骨内固定器

获取原文

摘要

There are about 14.5 occurrences of fracture fixation per every 100, 000 in the population every year. As a result, approximately 370, 000 hospitals visits occur every year. Presently, there are two exclusive schools of thought for internal fracture fixation: rigid and biological fixation. Rigid fixation utilizes stiffer implants for precise fragment positioning. However, significant stress shielding occurs as a result of the fixation. Biological fixation utilizes more flexible implants to reduce surgical trauma and allows for more functional healing but the possibility of non-union and delayed healing increases as well. We aim to combine these previously exclusive schools of thought by developing a novel proof-of-concept biphasic internal fixator design which varies its stiffness between the typical stiffness of the two schools. The design utilizes a shape memory polymer (SMP) to allow for biphasic actuation of the device. Upon inductively heating the polymer above its glass transition temperature (Tg), the SMP layer changes from a thicker initial shape to a preprogrammed "memorized" thinner shape. This leads to change of cross-sectional area and moment of inertia of the device resulting in a decreased axial, torsional, and bending stiffnesses; thus, reducing the effects of stress shielding while ensuring precise fragment union. ANSYS was used to perform finite element analysis (FEA) on our model of the device. Preliminary results from our FEA suggest that a forty percent reduction in stiffness may be achieved through utilizing a material which decreases its thickness from 7 mm to 2 mm.
机译:每年每100,000人中大约有14.5例发生骨折固定。结果,每年大约有370,000医院就诊。目前,对于内部骨折固定有两种排他的思想流派:刚性固定和生物固定。刚性固定利用较硬的植入物进行精确的碎片定位。然而,由于固定,发生了显着的应力屏蔽。生物固定利用更灵活的植入物来减少手术创伤并允许更多的功能性愈合,但是不愈合和延迟愈合的可能性也会增加。我们的目标是通过开发一种新颖的概念验证双相内部固定器设计来结合这些先前专有的思想流派,该设计在两种流派的典型刚度之间改变其刚度。该设计利用形状记忆聚合物(SMP)来实现设备的双相驱动。在将聚合物感应加热到其玻璃化转变温度(Tg)以上时,SMP层将从较厚的初始形状更改为预编程的“记忆”较薄的形状。这会导致设备的横截面面积和惯性矩发生变化,从而导致轴向刚度,扭转刚度和弯曲刚度降低;因此,在确保精确的碎片结合的同时,减少了应力屏蔽的影响。 ANSYS用于对我们的设备模型进行有限元分析(FEA)。我们的有限元分析的初步结果表明,通过使用将其厚度从7毫米减小到2毫米的材料,可以将刚度降低40%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号