首页> 外文会议>ASME international conference on ocean, offshore and arctic engineering >SEABED INTERACTION MODELLING EFFECTS ON THE GLOBAL RESPONSE OF CATENARY PIPELINE: A CASE STUDY
【24h】

SEABED INTERACTION MODELLING EFFECTS ON THE GLOBAL RESPONSE OF CATENARY PIPELINE: A CASE STUDY

机译:交互作用建模对输水管道整体响应的影响:一个案例研究

获取原文

摘要

A steel catenary riser (SCR) attached to a floating platform at its upper end encounters oscillations in and near its touchdown zone (TDZ), which results in interaction with the seabed. Field observations and design analysis of SCRs show that the highest stress and greatest fatigue damage occurred near the touchdown point where the SCR first touches the seabed soil. The challenges regarding the fatigue damage assessment of an SCR in the TDZ are primarily because of the non-linear behaviour of SCR-seabed interaction and considerable uncertainty in seabed interaction modelling and geotechnical parameters. Analysis techniques have been developed in the two main areas: SCR-seabed interaction modelling and the influence of the uncertainty in the geotechnical parameters on the dynamic response and fatigue performance of SCRs in the TDZ. Initially, this study discusses the significance of SCR-seabed interaction on the response of an SCR for deepwater applications when subjected to random waves on soft clay using the commercial code OrcaFlex for non-linear time domain simulation. In the next step, this study investigates the sensitivity of fatigue performance to geotechnical parameters through a parametric study. It is proven that employing the improved lateral SCR-seabed interaction model with accurate prediction of soil stiffness and riser penetration with cyclic loading enables us to obtain dynamic global riser performance in the TDZ with better accuracy. The fatigue analyses results prove that the confounding results indicated by the previous research studies on the SCR in the TDZ are due to different geotechnical parameters imposed with the seabed interaction model. The main benefit of employing non-linear seabed approach is to capture the entity of realistic soil interaction behaviour in modelling and analysis and to predict the likelihood of the fatigue damage of the SCR with seabed interaction, thereby minimising the risk of the loss of the containment with the associated environmental impact.
机译:连接到浮动平台上端的钢悬链立管(SCR)在其着陆区(TDZ)内及其附近遇到振荡,从而导致与海床的相互作用。 SCR的现场观察和设计分析表明,最高应力和最大的疲劳破坏发生在SCR首次接触海床土壤的触地点附近。 TDZ中SCR的疲劳损伤评估面临的挑战主要是由于SCR-海床相互作用的非线性行为以及海床相互作用建模和岩土参数的不确定性。已经在两个主要领域开发了分析技术:SCR-海床相互作用模型以及岩土参数的不确定性对TDZ中SCR的动力响应和疲劳性能的影响。最初,本研究使用商业代码OrcaFlex进行非线性时域仿真,探讨了SCR-海床相互作用对SCR在深水应用中的响应的重要性,该响应在软黏土上受到随机波的影响。在下一步中,本研究通过参数研究来研究疲劳性能对岩土参数的敏感性。事实证明,采用改进的横向SCR-海床相互作用模型并精确预测具有循环荷载的土壤刚度和立管渗透,可以使我们在TDZ中获得动态整体立管性能,且精度更高。疲劳分析结果证明,先前对TDZ中SCR的研究表明的混淆结果是由于海床相互作用模型施加了不同的岩土参数。采用非线性海床方法的主要好处是在建模和分析中捕获了真实的土壤相互作用行为的实体,并预测了由于海床相互作用而使SCR疲劳损坏的可能性,从而将安全壳损失的风险降到最低以及相关的环境影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号