首页> 外文会议>FISITA world automotive congress >Key Items for Future Hybrid Applications: Energy Storage and Power Electronics for Micro Hybrids up to Full Hybrids and EVs
【24h】

Key Items for Future Hybrid Applications: Energy Storage and Power Electronics for Micro Hybrids up to Full Hybrids and EVs

机译:未来混合动力应用的关键项目:微型混合动力车,全混合动力车和电动汽车的储能和电力电子

获取原文

摘要

Research/Engineering Question: Micro-Hybrid applications like start/ stop system and intelligent alternator control are well known and widely implemented to achieve first improvements regarding the reduction of CO_2 emission. Key items for their realization are the 12 V lead acid battery monitoring and power system stabilization approaches as well as optimizations of aerodynamics, enhanced warm cranking procedures and energy efficient electrification of power loads like electrical power steering systems. To achieve the upcoming CO_2 reduction targets in 2020 further optimization potentials have to be elaborated and have to be introduced. Results/Conclusion: Additional improvements can be achieved by extrapolated techniques like enhanced start/stop application, which means stop-start at vehicle speed of 30 km/h, and idle cruising/sailing. But these functionalities have a significant impact onto the stability and reliability of the power system based on the previous experiences with the common stop-start function. They can only be realized within a low voltage power system by the introduction of new enhanced energy storage solutions like additional batteries, double-layer capacitors or lithium-ion cells in combination with power electronics. By the prevention of high voltage implementations these solutions show a promising benefit to cost ratio in comparison to Full-Hybrid solutions. If further efficient functionalities like high power regenerative braking and electrical creeping are intended to implement, additional electrical measures have to be introduced. For instance a dual low voltage power system architecture with a system voltages lower than 60 V can be used to fulfill the requested energy and power capability of the power system for these corresponding vehicle functions. Double layer capacitors are suitable for high power regenerative braking due to their high charge acceptance and high current discharge capability. If functions with high energy demand like electrical creeping should be applied, then solutions using lithium ion cells are much more sufficient. Full-Hybrid and pure electric driven vehicles offer the maximum of CO_2 reduction potential. Here, nickel-metal-hydride or lithium ion batteries are used to reach the balance between power and high energy demand. Methodology/Limitation: Within this chapter the impact of these new vehicle applications onto the energy storage and their integration into the power system using power electronics is discussed from a supplier perspective based on actual pre- and series development projects.
机译:研究/工程问题:诸如起动/停止系统和智能交流发电机控制之类的微混合动力应用是众所周知的,并且得到了广泛实施,以实现有关减少CO_2排放的初步改进。实现这些目标的关键项目是12 V铅酸电池监视和电力系统稳定方法,以及空气动力学的优化,增强的热启动程序和诸如电动助力转向系统之类的动力负载的节能电气化。为了实现即将到来的2020年CO_2减排目标,必须阐述并引入进一步的优化潜力。结果/结论:通过外推技术可以实现其他改进,例如增强的启动/停止应用程序,即以30 km / h的车速停止启动以及怠速巡航/航行。但是,基于先前使用通用停止启动功能的经验,这些功能对电力系统的稳定性和可靠性有重大影响。只有通过引入新的增强型能量存储解决方案(如附加电池,双层电容器或锂离子电池与电力电子设备结合使用),才能在低压电源系统中实现它们。与全混合解决方案相比,通过预防高压实施,这些解决方案在成本比方面显示出可喜的收益。如果要实现更高效率的功能,例如大功率再生制动和电气蠕变,则必须采用其他电气措施。例如,具有低于60 V的系统电压的双低压电力系统架构可以用于满足这些相应的车辆功能所要求的电力系统的能量和功率能力。双层电容器由于具有高电荷接受能力和高电流放电能力,因此适合于大功率再生制动。如果应该应用具有高能量需求的功能(例如电蠕变),那么使用锂离子电池的解决方案就足够了。全混合动力和纯电动汽车提供最大的CO_2减排潜力。在这里,镍氢或锂离子电池用于达到功率和高能量需求之间的平衡。方法论/局限性:在本章中,将从供应商的角度出发,基于实际的前期开发和系列开发项目,讨论这些新车辆应用对能量存储及其通过电力电子设备集成到电力系统中的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号