首页> 外文会议>European symposium on computer aided process engineering >An Integral Approach to Multi-physics Application for Packed Bed Reactors
【24h】

An Integral Approach to Multi-physics Application for Packed Bed Reactors

机译:包装床反应堆多物理应用的一体化方法

获取原文

摘要

A large number of engineering applications involve granular material or a particulate phase in combination with a gaseous or liquid phase. Predominant applications are as diverse as pharmaceutical industry e.g. drug production, agriculture food and processing industry, mining, construction and agricultural machinery, metals manufacturing, energy production and systems biology. Common to all these application is that they cover a large spectrum of length scales ranging from inner particle length scales to global dimensions of the reactor. In order to describe the processes and their interaction accurately, tailored algorithms are required for prediction and analysis. The current numerical approach of the Extended Discrete Element Method (XDEM) is based on an Eulerian-Lagrange coupling. For this purpose the solid phase consisting of individual particles is treated by the Lagrange method that describes both the dynamic state i.e. position and orientation of each particle in space and time and its thermodynamic state e.g. internal temperature and species distribution. The flow of gas in the void space between the particles is predicted by traditional and well-proven Computational Fluid Dynamics (CFD) taking into account heat and mass transfer between the particles and the surrounding gas phase. Hence, the entire process represented by the sum of all particle processes in conjunction with fluid dynamics. The afore-mentioned numerical concept was applied to predict pyrolysis of a packed bed of wood particles in a cylindrical reactor. A comparison of predicted results with experimental data show good agreement. Hence, the numerical concept is able to resolve a large range of length scales for solid reaction engineering. An analysis of detailed results helps to uncover the underlying physics of the process, and thus, allows for an improved design and operation conditions.
机译:大量的工程应用涉及颗粒材料或与气态或液相组合的颗粒状相。主要应用与制药行业一样多样化。药品生产,农业食品加工行业,采矿,建筑和农业机械,金属制造,能源生产和系统生物学。所有这些应用的共同点是它们覆盖了从内部粒度长度范围到反应器的全局尺寸的大谱。为了准确地描述过程及其交互,预测和分析需要定制算法。延伸分立元件方法(XDEM)的当前数值方法基于Eulerian-Lagrange耦合。为此目的,由单个颗粒组成的固相通过LAGRANGE方法处理,所述拉长方法描述了动态状态I.。空间和时间中每个粒子的位置和取向,以及其热力学状态。内部温度和物种分布。通过传统的和经过熟得良好的计算流体动力学(CFD)预测颗粒之间的空隙空间中的气体流动,考虑到颗粒和周围气相之间的热量和质量传递。因此,通过与流体动力学结合的所有粒子过程的总和表示的整个过程。上述数值概念被应用于预测圆柱形反应器中的木颗粒的填充床的热解。对实验数据的预测结果比较良好的一致性。因此,数值概念能够解决适用于固体反应工程的大范围长度尺度。对详细结果的分析有助于揭示该过程的底层物理,因此允许改进的设计和操作条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号