首页> 外文会议>IEEE Real-Time and Embedded Technology and Applications Symposium >Work in Progress: Path-based Graph Partition for Parallel Hardware-accelerated Functional Verification
【24h】

Work in Progress: Path-based Graph Partition for Parallel Hardware-accelerated Functional Verification

机译:正在进行中的工作:并行硬件加速功能验证的基于路径的图形分区

获取原文
获取外文期刊封面目录资料

摘要

Functional verification of large scale circuit design is a basic problem in Very Large Scale Integrated (VLSI) design. With the increasing scale of the circuit, it is urgent to divide the whole large scale circuit into some smaller sub-circuits so as to perform parallel functional verification on multiple hardware processors. The partition problem of hardware-accelerated functional verification can be regarded as a graph partition problem. However, unlike the traditional graph partition requirements for minimum cutting, the hardware-accelerated functional verification partition needs to reduce the simulation depth and improve the parallelism of the simulation. Therefore, partition for hardware-accelerated functional verification is a problem combined with graph partitioning and schedule. While the traditional schedule algorithms have high complexity and cannot handle large scale Directied Acyclic Graph (DAG) scheduling. To tackle the parallelism, depth, and cut edge problem, we design a new method, called path-metis. Path-metis combines the scheduling idea, such as the critical path information and task priority of the DAG, into the traditional multilevel partitioning method. Our preliminary experiments on real circuits show the effectiveness of the method, and the simulation depth can be reduced by about 11.35% on average compared with metis only with 27.58% cut size increasing.
机译:大规模电路设计的功能验证是非常大规模集成(VLSI)设计中的基本问题。随着电路的规模越来越大,迫切需要将整个大规模电路分成一些较小的子电路,以便在多个硬件处理器上执行并行功能验证。硬件加速功能验证的分区问题可以被视为图形分区问题。但是,与最小切割的传统图形分区要求不同,硬件加速的功能验证分区需要减少模拟深度并改善模拟的并行性。因此,用于硬件加速的功能验证的分区是与图形分区和计划结合的问题。虽然传统的时间表算法具有很高的复杂性,但不能处理大规模指导的非循环图(DAG)调度。为了解决并行,深度和切割边缘问题,我们设计一种名为Path-Metis的新方法。 Path-Metis将调度思想(例如DAG的关键路径信息和任务优先级)组合到传统的多级分区方法中。我们对实际电路的初步实验表明了该方法的有效性,而且平均水平的仿真深度可以减少约11.35%,而Metis仅具有27.58%的切割尺寸增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号