首页> 外文会议>IEEE International Conference on Nanotechnology >7 Package-Compatible High-Density Nano-Scale Capacitors with Conformal Nano-Dielectrics
【24h】

7 Package-Compatible High-Density Nano-Scale Capacitors with Conformal Nano-Dielectrics

机译:7封装兼容的高密度纳米尺度电容,具有保形纳米电介质

获取原文

摘要

Passive components support key electrical functions in any electronic system. They constitute ~80% of all components [1] and take up to ~50% of the printed wiring board area [2]. They, therefore, substantially influence the size, cost, and performance of the electronic system as a whole. Capacitors (C) are the most challenging among all the passives (R, L, and C). They perform a multitude of important functions such as decoupling, noise suppression, power storage conditioning and modulation, sensing, and signal processing. The never-ending demand for the high-performance, portable electronics has propelled the need for miniaturization of electronic components, including the capacitors. This demand for miniaturization entails the fabrication of thin power modules that are less than 200 μm in thickness to be embedded into 3D silicon and organic packages [3]. Additionally, these packages need to be reliably and safely operated over a broad temperature range [4]. So far, these passive components, especially the capacitors, have been major impediments on the road to system miniaturization and thickness reduction. Although the demand for high-density capacitors in integrated thin power modules has been increasing, the volumetric density of the available discrete capacitors has only gone through incremental changes over the past few decades. This is because of several fundamental limitations with existing capacitor technologies. Today's highdensity capacitors face the imminent demand of ultrahigh volumetric densities, ultralow leakage currents, high-frequency operation, and faster charge–discharge speeds. The current capacitor technologies are stretching their limits to explore novel materials, processes, and integration methods to meet the demands, but suffer from several fundamental limitations. A new class of nanocapacitor technologies is needed to address these limitations, which is the main focus of this chapter.
机译:被动组件支持任何电子系统中的关键电气功能。它们构成〜80%的组件[1],占据印刷线路板区域的〜50%[2]。因此,它们基本上影响了电子系统的整体尺寸,成本和性能。电容器(C)是所有被动(R,L和C)中最具挑战性的。它们执行多个重要功能,例如解耦,噪声抑制,蓄电调节和调制,感测和信号处理。对高性能的永无止境的便携式电子设备的需求推动了电子元件的小型化,包括电容器。这种对小型化的需求需要制造小于200μm的厚度小于200μm以嵌入到3D硅和有机包装中[3]。另外,需要在宽温度范围内可靠和安全地在宽温度范围内可靠地和安全地操作。到目前为止,这些被动部件,尤其是电容器,在系统小型化和厚度减小的道路上一直是主要的障碍。尽管对集成薄功率模块中的高密度电容器的需求已经增加,但可用的离散电容器的容积密度仅在过去几十年中通过增量变化。这是因为现有电容技术的几个基本限制。今天的高密度电容器面临着迫切的超高体积密度,超级漏电流,高频操作和更快的充电放电速度的需求。目前的电容技术正在延长它们的限制,以探索满足需求的新型材料,流程和集成方法,而是遭受若干基本限制。需要一类新的纳米卡卡接线技术来解决这些限制,这是本章的主要重点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号