首页> 外文会议>IEEE International Conference on Data Mining >Part-Level Regularized Semi-Nonnegative Coding for Semi-Supervised Learning
【24h】

Part-Level Regularized Semi-Nonnegative Coding for Semi-Supervised Learning

机译:半监督学习的零件正常半非负编码

获取原文

摘要

Graph-based semi-supervised learning method has been influential in the data mining and machine learning fields. The key is to construct an effective graph to capture the intrinsic data structure, which further benefits for propagating the un-labeled data over the graph. The existing methods have shown the effectiveness of a graph regularization term on measuring the similarities among samples, which further uncovers the data structure. However, all the existing graph-based methods are on the sample-level, i.e. calculate the similarity based on sample-level representation coefficients, inevitably overlooking the underlying part-level structure within sample. Inspired by the strong interpretability of Non-negative Matrix Factorization (NMF) method, we design a more robust and discriminative graph, by integrating low-rank factorization and graph regularizer into a unified framework. Specifically, a novel low-rank factorization through Semi-Non-negative Matrix Factorization (SNMF) is proposed to extract the semantically part-level representation. Moreover, instead of incorporating a graph regularization on sample-level, we propose a sparse graph regularization term built on the decomposed part-level representation. This practice results in a more accurate measurement among samples, generating a more discriminative graph for semi-supervised learning. As a non-trivial contribution, we also provide an optimization solution to the proposed method. Comprehensive experimental evaluations show that our proposed method is able to achieve superior performance compared with the state-of-the-art semi-supervised classification baselines in both transductive and inductive scenarios.
机译:基于图形的半监督学习方法在数据挖掘和机器学习领域有影响力。关键是要构建有效的图形以捕获内部数据结构,其进一步的益处用于在图形上传播未标记的数据。现有方法显示了图形正则化术语的有效性,用于测量样本之间的相似性,这进一步揭示了数据结构。然而,所有现有的基于图形的方法都在样本级别上,即基于采样级表示系数计算相似度,不可避免地忽略样本内的底层部分结构。灵感来自非负矩阵分组(NMF)方法的强大可解释性,我们通过将低秩分解和图形规范器集成到统一的框架中,设计更强大和辨别的图表。具体地,提出了通过半非负矩阵分解(SNMF)的新型低级分子化以提取语义部分级别表示。此外,而不是在样本级别结合图形规范化,而是提出了一种基于分解部分级表示构建的稀疏图形正则化术语。这种做法导致样品中更准确的测量,为半监督学习产生更辨别的图表。作为一种非琐碎的贡献,我们还提供了所提出的方法的优化解决方案。综合实验评估表明,与转换和归纳情景的最先进的半监督分类基线相比,我们所提出的方法能够实现卓越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号