【24h】

Modeling temperature dependent chemical reaction of intermetallic compound growth

机译:金属间化合物生长的温度依赖性化学反应

获取原文

摘要

This paper is concerned with the modeling of the formation and growth of InterMetallic Compound (IMC) layers in tin (Sn) based solder bumps on copper (Cu) interconnects within a microelectronic component subjected to a thermo-cycle test. IMC formation is the result of diffusion and chemical reaction processes. There is a change in shape and volume between the products and reactants, and, consequently, in addition to temperature the growth is influenced by the resulting residual stresses and strains. Strictly speaking IMC formation is based on multi-component diffusion in solids, including vacancies as a migrating species leading to Kirkendall voiding, and in addition to mechanical stress it can be enhanced by electric currents. It should also be noted that if the bump is used as an electric connection in a microelectronic component additional mechanical stress will result from the thermal mismatch of the various materials used to fabricate this component. In this paper we will use a formerly developed methodology to study IMC growth in solder bumps that are sheared due to the different thermal expansion coefficients of the adjacent material structures. The change of temperature is chosen such that it mimics the temperature range, ramp and hold times typically encountered in a temperature cycle test. The methodology for computing the growth of the reaction front is based on a kinetic equation. It was derived in former work from an expression for the chemical affinity tensor. It allows to incorporate the influence of stresses and strains on the chemical reaction rate and the normal component of the reaction front velocity in a rational manner. Due to the complexity of the geometry the involved solution procedures must be numerical ones. Consequently, the Finite Element (FE) technique will be applied during the solution.
机译:本文涉及在经受热循环试验的微电子组分内的铜(Sn)型铜(Sn)型焊料凸块中的金属间化合物(IMC)层的形成和生长的建模。 IMC形成是扩散和化学反应过程的结果。产品和反应物之间存在形状和体积的变化,因此,除了温度之外,生长受到所得残余应力和菌株的影响。严格讲的IMC形成基于固体的多分量扩散,包括迁移物种的空位,导致Kirkendall排尿,并且除了机械应力之外,它可以通过电流增强。还应注意,如果在微电子成分中使用凸块作为电连接,则额外的机械应力将由用于制造该组分的各种材料的热失配导致。在本文中,我们将使用以前开发的方法来研究由于相邻材料结构的不同热膨胀系数而被剪切的焊料凸块中的IMC生长。选择温度的变化,使得它模仿温度循环试验中通常遇到的温度范围,斜坡和保持时间。用于计算反应前沿的生长的方法基于动力学方程。它是从化学亲和力张量的表达中获得的前工作。它允许以合理的方式将应力和菌株对化学反应速率和反应前速度的正常成分掺入。由于几何形状的复杂性所涉及的解决方案程序必须是数值的。因此,在溶液期间将应用有限元(Fe)技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号