首页> 外文会议>International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems >Prediction of mixed-mode interfacial fracture from cohesive zone finite element model: Testing and determination of fracture process parameters
【24h】

Prediction of mixed-mode interfacial fracture from cohesive zone finite element model: Testing and determination of fracture process parameters

机译:粘性区有限元模型中混合模式界面骨折预测:裂缝工艺参数的测试与测定

获取原文

摘要

Delamination between copper and epoxy molding compound (EMC) is one of the common failure modes in packages due to relatively weak adhesion at the interface. Delamination is difficult to predict because a package is often with a complex structure design constructed with different materials and under combined normal and shear loading. Development of cohesive zone elements applied in FEM has emerged into the application of cohesive zones as an effective tool for crack propagation simulation. In this study, a methodology to obtain useful parameters for cohesive zone modeling from experimental measurements is proposed. The approach is demonstrated with the adhesive joint between epoxy molding compound and copper that was under residual stresses and applied mixed-mode loading. The proposed approach to determine the traction-separation function does not rely on the uncertainties of crack tip stresses. The predicted load-displacement result is matched with experimental measurement results at the crack propagation region. Package delamination can be predicted by implementing the proposed testing and modeling scheme within the cohesive zone model.
机译:铜和环氧树脂成型化合物(EMC)之间的分层是界面在界面上相对较弱的粘合性封装中的常见故障模式之一。分层难以预测,因为包装通常具有用不同材料构造的复杂结构设计,并且在正常和剪切负载下。在FEM中施加的粘性区域元素的开发出现在粘性区域的应用中作为裂纹传播模拟的有效工具。在本研究中,提出了一种从实验测量中获取有用参数的方法。通过在残留应力下的环氧树脂成型化合物和铜之间的粘合接头来证明该方法,并施加混合模式负载。确定牵引分离功能的提出方法不依赖于裂纹尖端应力的不确定性。预测的负载 - 位移结果与裂纹传播区域的实验测量结果匹配。通过在粘性区域模型中实施所提出的测试和建模方案,可以预测包分层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号