首页> 外文会议>International Symposium on Quality Electronic Design >Low-power Analog and Mixed-signal IC Design of Multiplexing Neural Encoder in Neuromorphic Computing
【24h】

Low-power Analog and Mixed-signal IC Design of Multiplexing Neural Encoder in Neuromorphic Computing

机译:多重计算中复用神经编码器的低功耗模拟和混合信号IC设计

获取原文

摘要

The research on computing clusters comprising neuromorphic systems has drawn the interest of many researchers in the field. Neural encoding is a crucial component that determines how the information is conveyed through a train of spikes, greatly impacting the mode of operations’ and systems’ performance to a large extent. Numerous encoding schemes have been proposed in the literature, including latency encoding, ISI encoding, and phase encoding. Each of these schemes has its own benefits and shortcomings which brings up the idea to see if they can complement each other. Multiplexing encoding combines two different schemes with the aim of enhancing the performance via conveying more information, making the encoded spikes more robust against noise. In this paper, we introduce a mixed-signal IC design of multiplexing latency-phase encoder. A key principle of the multiplexing encoding, the gamma alignment, is employed to achieve enhanced functionality of spiking neurons supported by biological research. In the proposed encoding scheme, a set of predetermined spiking neurons, which can be perceived as dimensionality reduction over the grouped higher-dimensional stimuli, maps the input currents to latency spike trains. Consequently, these spike trains are aligned and then superimposed on each other to form the resulting spike train. The simulation result is carefully inspected for verification of the encoder. The introduced power-efficient circuit is designed with 180nm CMOS technology and, to the best of our knowledge, is the first IC design of the multiplexing latency-phase that is built upon two different encoding schemes. The power consumption of the encoder is generally proportional to the number of neurons, and for a 4-neuron structure, the layout-level simulation result shows the circuit consumes 10mW of power.
机译:关于包括神经形态系统的计算簇的研究已经为该领域的许多研究人员造成了兴趣。神经编码是一个重要组成部分,决定了信息如何通过一列尖峰传达,大大影响运营方式和系统的性能。在文献中提出了许多编码方案,包括延迟编码,ISI编码和相位编码。这些方案中的每一个都有自己的好处和缺点,从而提出了看他们是否可以相互补充的想法。多路复用编码与两个不同的方案相结合,目的通过传达更多信息来增强性能,使编码尖峰更加强大地对噪声。在本文中,我们介绍了多路复用延迟相位编码器的混合信号IC设计。使用多路复用编码的关键原理,γ对准,用于实现生物研究支持的尖刺神经元的增强功能。在所提出的编码方案中,一组预定的尖峰神经元,可以被视为对分组的高维刺激的维度降低,将输入电流映射到延迟峰值列车。因此,这些尖峰列车被对齐,然后彼此叠加以形成所得到的尖峰列车。仔细检查模拟结果以验证编码器。推出的功率高效电路采用180nm CMOS技术设计,并据我们所知,是在两个不同编码方案上构建的多路复用延迟阶段的第一个IC设计。编码器的功耗通常与神经元数成比例,并且对于4-neuron结构,布局级仿真结果显示电路消耗10MW的功率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号