首页> 外文会议>International materials symposium >Mechanical Behavior of the Lamellar Structure in Semi-Crystalline Polymers
【24h】

Mechanical Behavior of the Lamellar Structure in Semi-Crystalline Polymers

机译:半结晶聚合物中层状结构的力学行为

获取原文

摘要

We have employed molecular dynamics simulations to study the behavior of virtual polymeric materials under an applied uniaxial tensile load. Through computer simulations, one can obtain experimentally inaccessible information about phenomena taking place at the molecular and microscopic levels. Not only can the global material response be monitored and characterized along time, but the response of macromolecular chains can be followed independently if desired. The computer-generated materials were created by emulating the step-wise polymerization, resulting in self-avoiding chains in 3D with controlled degree of orientation along a certain axis. These materials represent a simplified model of the lamellar structure of semi-crystalline polymers, being comprised of an amorphous region surrounded by two crystalline lamellar regions. For the simulations, a series of materials were created, varying i) the lamella thickness, ii) the amorphous region thickness, iii) the preferential chain orientation, and iv) the degree of packing of the amorphous region. Simulation results indicate that the lamella thickness has the strongest influence on the mechanical properties of the lamella-amorphous structure, which is in agreement with experimental data. The other morphological parameters also affect the mechanical response, but to a smaller degree. This research follows previous simulation work on the crack formation and propagation phenomena, deformation mechanisms at the nanoscale, and the influence of the loading conditions on the material response. Computer simulations can improve the fundamental understanding about the phenomena responsible for the behavior of polymeric materials, and will eventually lead to the design of knowledge-based materials with improved properties.
机译:我们已经使用分子动力学模拟来研究虚拟聚合物材料在施加的单轴拉伸载荷下的行为。通过计算机模拟,可以获得有关在分子和微观水平上发生的现象的实验上无法获得的信息。不仅可以随时间监测和表征总体物质响应,而且如果需要,可以独立跟踪大分子链的响应。计算机生成的材料是通过模拟逐步聚合来创建的,从而导致3D的自回避链具有沿某个轴的定向度受控。这些材料代表了半结晶聚合物的层状结构的简化模型,它由被两个结晶层状区域包围的无定形区域组成。为了进行模拟,创建了一系列材料,这些材料改变了i)薄片厚度,ii)非晶区域厚度,iii)优先链取向和iv)非晶区域的堆积程度。仿真结果表明,薄层厚度对非晶结构的力学性能影响最大,与实验数据吻合。其他形态参数也影响机械响应,但程度较小。这项研究遵循先前关于裂纹形成和扩展现象,纳米级变形机制以及加载条件对材料响应的影响的模拟工作。计算机模拟可以改善对引起聚合材料行为的现象的基本理解,并最终导致设计具有改进性能的基于知识的材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号