首页> 外文会议>International IEEE/EMBS Conference on Neural Engineering >Implementation of the NucleoCortical pathways inside a Spiking Neural Network model of Cerebellar Nuclei
【24h】

Implementation of the NucleoCortical pathways inside a Spiking Neural Network model of Cerebellar Nuclei

机译:在小脑核的尖峰神经网络模型内的核黑化途径的实施

获取原文

摘要

The cerebellum is involved in a large number of neural processes, especially in motor control and motor learning. From a functional point of view, the Deep Cerebellar Nuclei (DCN) constitute the core of the cerebellar processing, as they exploit the spatiotemporal filtering action provided by the cerebellar cortex to generate motor corrections. To investigate the contribution of the cerebellar nuclei in motor coordination, in-silico models of the DCN are often exploited in virtual simulations of complex sensorimotor tasks. Since the outcomes of this analysis may depend on the accuracy of the DCN model reconstruction, we here advanced existing spiking neural network models of the cerebellar nuclei. Specifically, the nucle-ocortical pathways, which provide feedback signals back to the cerebellar cortex, have been implemented. This reconstruction required the development of a new neural population in the DCN (Glycinergic-Inactive neurons). Using the neural simulator NEST, Glycinergic-Inactive neurons have been modeled as Extended-Generalized Leaky Integrate and Fire models, while nucleocortical pathways have been implemented considering their anatomical organization and functional behaviour. By exploiting these improvements, the DCN models may be used for more accurate simulations of complex cerebellum-driven tasks, investigating the signal integration process between sensorimotor inputs and cerebellar output internal feedback.
机译:小脑涉及大量神经过程,尤其是在电机控制和电机学习中。从功能性的角度来看,深脑核(DCN)构成小脑加工的核心,因为它们利用小脑皮质提供的时空滤波作用产生电动机校正。为了探讨小脑核在电机协调中的贡献,DCN的硅模型通常在复杂感觉传输任务的虚拟模拟中被利用。由于该分析的结果可能取决于DCN模型重建的准确性,我们在这里提出了现有的小脑核的尖峰神经网络模型。具体地,已经实施了将反馈信号提供回小脑皮质的核 - 印象途径。这种重建需要在DCN(甘油能 - 无活性神经元中的新神经群)的发展。使用神经模拟器巢,甘氨酸终体 - 无活性神经元已被建模为扩展广义泄漏集成和消防模型,而考虑到其解剖组织和功能行为,已经实施了核制物质途径。通过利用这些改进,DCN模型可用于更准确的复杂小脑驱动任务的模拟,研究了感觉电机输入和小脑输出内反馈之间的信号积分过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号