首页> 外文会议>IEEE International Solid-State Circuits Conference >A 14mW Fractional-N PLL Modulator with an Enhanced Digital Phase Detector and Frequency Switching Scheme
【24h】

A 14mW Fractional-N PLL Modulator with an Enhanced Digital Phase Detector and Frequency Switching Scheme

机译:具有增强的数字相位检测器和频率切换方案的14MW分数-N PLL调制器

获取原文

摘要

The fractional-N frequency synthesizer is a key building block of wireless systems as it can both generate a high frequency signal with a well-defined frequency and modulate that signal [1,2]. This work addresses two limitations of this architecture; the reliance on analog circuitry in deep submicron technology, and the trade-off between low loop bandwidth for good ΔΣ noise rejection and high loop bandwidth for fast modulation rates. A synthesizer is presented that utilizes an all-digital phase detector in place of the conventional analog-intensive phase detector, charge pump and loop filter blocks. In addition, the design uses a digital dual-modulation scheme that alleviates the trade-off between loop bandwidth and switching speed. These techniques are presented as part of a prototype 14mW 2.2GHz MSK transmitter with a transmission rate of 927.5kb/s. A block diagram of a conventional fractional-N synthesizer is shown in Fig. 19.9.1. The information extracted from the phase detector is inherently analog in nature since the phase information is not synchronized to either the reference clock or the divided down VCO clock and is not quantized. Although conventional XOR and tri-state phase detectors utilize digital building blocks, a charge pump and filter are required to extract useful phase-difference information. Recently, a time-to-digital converter (TDC) is reported that uses multiple flip-flops and unit delays (in practice inverters) to quantize the time difference between the edges of the reference and feedback clock [3]. However, with this approach the resolution and linearity are dependent on the speed and matching of the unit delay elements, and hence inherently process dependent.
机译:分数N频率合成器是无线系统的关键构建块,因为它可以既生成具有良好定义的频率的高频信号,并调制该信号[1,2]。这项工作解决了这一架构的两个限制;在深亚微米技术,模拟电路的依赖,并有很好的ΔΣ噪声抑制和高环路带宽的快速调制速率低环路带宽之间的权衡。一种合成器,提出了利用一个全数字相位检测器代替传统的模拟密集相位检测器,电荷泵及环路滤波器块。此外,本设计采用了数字双调制方案,其减轻环路带宽和切换速度之间的折衷。这些技术呈现为原型14MW 2.2GHz的MSK发射机与927.5kb的传输速率的部分/秒。常规分数N合成器的框图被示出在图19.9.1。由于相位信息不同步到参考时钟或分频VCO时钟,并且不量化从相位检测器提取的信息在本质上是固有地模拟。尽管常规的XOR和三态相位检测器利用数字积木,电荷泵和过滤器都需要提取有用的相位差信息。最近,一种时间 - 数字转换器(TDC)报道,使用多个触发器和单位延迟(在实践中反相器)来量化参考值和反馈时钟[3]的边缘之间的时间差。然而,这种方法的分辨率和线性依赖于速度和单元延迟元件的匹配,因此固有地依赖于工艺。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号