首页> 外文会议>Annual conference of the North American Thermal Analysis Society >The Impacts of Interfacial Energy and 'Softness' of Confinement on the Glass Formation Behavior of Nanostructured Polymers
【24h】

The Impacts of Interfacial Energy and 'Softness' of Confinement on the Glass Formation Behavior of Nanostructured Polymers

机译:界面能量和“柔软度”对纳米结构聚合物玻璃形成行为的影响

获取原文

摘要

Numerous studies have demonstrated that polymers and other glass-forming materials confined to dimensions under 100 nm can exhibit large deviations from bulk glass formation behavior. These studies furthermore indicate that alterations in the glass transition under nanoconfinement depend on both the interfacial energy and the 'softness' of confinement. However, the exact functional form of this combined dependence has remained unknown, and the proper definition of 'softness' of confinement is presently unclear: some studies have focused on the relative structural or viscous relaxation times of the confined and confining materials, whereas other studies have emphasized their relative moduli. A richer understanding of the impact of these variables on nanoconfined Tg and other glass-formation-related properties, such as fragility of glass formation, would be of considerable value in the design of nanostructured materials with targeted properties. Here we describe molecular simulations of multinanolayered polymers in which we systematically vary the interfacial energy and the relative Tg's of the domains. Results suggest a simple functional form that describes the combined dependence of nanoconfined Tg on interfacial energy and the relative Debye- Waller factors of the two domains. These results indicate that the 'softness' of confinement should he defined in terms of the relative high frequency shear moduli, rather than low frequency moduli or structural relaxation times, of the confined and confining materials. Moreover, we find that the fragility of glass formation of the layers is depressed whenever the two films are dissimilar in terms of their bulk Tg's. These simulations qualitatively accord with available experimental results, suggesting that the resulting functional forms may provide new guidance towards the design and understanding of nanostructured materials. Moreover, results show that a 'compensation point' in interfacial energy, at which a confined material exhibits bulk Tg, may account for some measurements of bulk-like Tg in nanoconfined materials.
机译:许多研究已经证实,在100纳米局限于尺寸的聚合物和其他玻璃形成材料可以显示从块状玻璃形成行为的大偏差。这些研究还表明,在nanoconfinement玻璃化转变的改变取决于界面能和约束的“柔软性”两者。然而,这种组合的依赖性的确切功能形式仍然未知,和禁闭的“柔软”的适当定义目前尚不清楚:一些研究都集中在密闭和围材料的相对结构或粘性松弛时间,而其它的研究强调其相对模量。这些变量对nanoconfined Tg和其他玻璃形成相关的性质,例如玻璃形成的脆弱性的影响的更丰富的理解,将与目标性质的纳米结构材料的设计相当大的价值。这里,我们描述multinanolayered聚合物,其中我们系统地改变界面能和结构域的相对的Tg的分子模拟。结果表明,描述nanoconfined的Tg对界面能和两个结构域的相对德拜 - 沃勒因素的共同相关性的简单的功能形式。这些结果表明,该限制的“柔软度”应该他在相对高频剪切模量来定义,而不是低频模量或结构弛豫时间,密闭和围材料。此外,我们发现,每当两部电影都在它们的体积Tg值方面不同的玻璃形成层的脆弱性被按下。这些模拟定性与实验结果一致,这表明所得到的函数形式可以提供朝向设计新的指导和纳米结构化材料的理解。此外,结果表明,一个补偿点'在界面能,在该密闭材料表现出的Tg批量,可以考虑在nanoconfined材料的一些测量块状的Tg。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号