首页> 外文会议>Annual conference of the North American Thermal Analysis Society >The Impacts of Interfacial Energy and 'Softness' of Confinement on the Glass Formation Behavior of Nanostructured Polymers
【24h】

The Impacts of Interfacial Energy and 'Softness' of Confinement on the Glass Formation Behavior of Nanostructured Polymers

机译:界面能和限制的“软度”对纳米结构聚合物玻璃形成行为的影响

获取原文

摘要

Numerous studies have demonstrated that polymers and other glass-forming materials confined to dimensions under 100 nm can exhibit large deviations from bulk glass formation behavior. These studies furthermore indicate that alterations in the glass transition under nanoconfinement depend on both the interfacial energy and the 'softness' of confinement. However, the exact functional form of this combined dependence has remained unknown, and the proper definition of 'softness' of confinement is presently unclear: some studies have focused on the relative structural or viscous relaxation times of the confined and confining materials, whereas other studies have emphasized their relative moduli. A richer understanding of the impact of these variables on nanoconfined Tg and other glass-formation-related properties, such as fragility of glass formation, would be of considerable value in the design of nanostructured materials with targeted properties. Here we describe molecular simulations of multinanolayered polymers in which we systematically vary the interfacial energy and the relative Tg's of the domains. Results suggest a simple functional form that describes the combined dependence of nanoconfined Tg on interfacial energy and the relative Debye- Waller factors of the two domains. These results indicate that the 'softness' of confinement should he defined in terms of the relative high frequency shear moduli, rather than low frequency moduli or structural relaxation times, of the confined and confining materials. Moreover, we find that the fragility of glass formation of the layers is depressed whenever the two films are dissimilar in terms of their bulk Tg's. These simulations qualitatively accord with available experimental results, suggesting that the resulting functional forms may provide new guidance towards the design and understanding of nanostructured materials. Moreover, results show that a 'compensation point' in interfacial energy, at which a confined material exhibits bulk Tg, may account for some measurements of bulk-like Tg in nanoconfined materials.
机译:大量研究表明,限制在100 nm以下尺寸的聚合物和其他玻璃形成材料可能会与块状玻璃的形成行为产生较大偏差。这些研究进一步表明,纳米约束作用下玻璃化转变的变化既取决于界面能又取决于约束作用的“柔软性”。但是,这种结合依赖性的确切功能形式仍是未知的,目前尚不清楚“软化”限制的正确定义:一些研究集中于限制和限制材料的相对结构或粘性弛豫时间,而其他研究强调了它们的相对模量。在设计具有目标特性的纳米结构材料时,对这些变量对纳米限制的Tg和其他与玻璃形成相关的特性(例如玻璃形成的脆性)的影响的更深入的了解将具有相当大的价值。在这里,我们描述了多纳米聚合物的分子模拟,其中我们系统地改变了界面能和域的相对Tg。结果表明,一种简单的功能形式描述了纳米约束Tg对界面能以及两个域的相对Debye-Waller因子的综合依赖性。这些结果表明,约束的“柔软性”应该根据被约束材料和约束材料的相对高频剪切模量而不是低频模量或结构弛豫时间来定义。此外,我们发现,无论何时两层膜的体积Tg都不相同时,层的玻璃形成的脆性都会降低。这些模拟在质量上与可用的实验结果相符,表明所产生的功能形式可能为纳米结构材料的设计和理解提供新的指导。此外,结果表明,界面能的“补偿点”使受限材料表现出整体Tg,可以解释纳米受限材料中类似整体Tg的某些测量结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号