首页> 外文会议>International symposium on microelectronics >Formulation of percolating thermal underfills using hierarchical self-assembly of micro- and nanoparticles by centrifugal forces and capillary bridging
【24h】

Formulation of percolating thermal underfills using hierarchical self-assembly of micro- and nanoparticles by centrifugal forces and capillary bridging

机译:通过离心力和毛细管桥联使用微米和纳米颗粒的分级自组装来配制渗透性热底部填充剂

获取原文

摘要

Thermal underfills are crucial to support integrationdensity scaling of future integrated circuit packages.Therefore, a sequential process using hierarchical selfassemblyof micro- and nanoparticles is proposed to achievepercolating thermal underfills with enhanced particle contacts.The three main process steps hereby are assembly of fillerparticles by centrifugation, formation of nanoparticle necksby capillary bridging, and the backfilling of the porousstructure with an unfilled capillary adhesive.Numerical simulations predicting trajectories anddistributions of micron-sized particles dispensed into arotating disk are presented. The trajectories exhibit a strongdependence on the particle size; thus in the case ofpolydisperse filler particles nonuniform particle beds mayresult. An efficient centrifugal disk design with spiral-likeguiding structures is experimentally validated. Defect-free,percolating particle beds in confined space with fill fractionsof 46 vol-% to 66 vol-%, i.e., close to the theoretical limit, arealso presented.The self-assembly of nanoparticles, forming enhancedthermal contacts between the percolating filler particles, isdiscussed. Two consecutive evaporation patterns during thecapillary bridging process were identified: 1) dendriticnetwork growth and 2) collapse of capillary bridges. Theconcave neck topology could only be achieved attemperatures below the boiling point. An optimal evaporationtemperature of 60°C with respect to in-plane uniformity andneck shape was identified. Existing thermal gradients normalto the cavity surface resulted in strongly asymmetric neckformation in the cavity. Hence, uniform heating in an oven isthe preferred method to initiate evaporation. Two types of bimodaldielectric necks are demonstrated. Polystyrene acts asthe adhesive between thermally conductive alumina particlesto form mechanically stable dielectric necks after anannealing step at 140°C. Interstitial and core-shell necks arepresented.Finally, a benchmark study was performed to compare theeffective thermal conductivity of the percolating thermalunderfill with and without necks with state-of-the-art capillaryunderfills. A close to fivefold improvement could be obtainedfor diamond filler particles with silver necks (3.8 W/m-K).
机译:散热性底部填充对于支持集成至关重要 未来集成电路封装的密度缩放。 因此,使用分层自组装的顺序过程 提出了微颗粒和纳米颗粒的实现 具有增强的颗粒接触的导热性底部填充胶渗透。 因此,三个主要过程步骤是填充填料的组装 离心分离颗粒,形成纳米颗粒颈 通过毛细管桥联和多孔的回填 带有未填充的毛细管粘合剂的结构。 数值模拟预测轨迹和 微米级颗粒的分布分配到 介绍了旋转盘。轨迹表现出很强的 取决于粒度;因此在 多分散填料颗粒不均匀的颗粒床可能 结果。高效的螺旋状离心盘设计 引导结构已通过实验验证。无缺陷, 在有限空间中填充颗粒的渗滤颗粒床 从46 vol%到66 vol%,即接近理论极限 还介绍了。 纳米粒子的自组装,形成增强 渗流填料颗粒之间的热接触为 讨论过。在蒸发过程中两个连续的蒸发模式 确定了毛细管桥联过程:1)树突状 网络增长和2)毛细血管桥塌陷。这 凹颈拓扑只能在 温度低于沸点。最佳蒸发 相对于面内均匀度为60°C的温度 确定了颈部形状。现有温度梯度正常 腔表面导致颈部强烈不对称 在腔中形成。因此,在烤箱中均匀加热是 引发蒸发的首选方法。两种双峰 展示了介电的颈部。聚苯乙烯起 导热氧化铝颗粒之间的粘合剂 形成一个机械稳定的介电颈 在140°C的退火步骤。间质和核壳状的脖子是 提出了。 最后,进行了基准研究以比较 渗流热的有效导热系数 先进的毛细管,带或不带颈部的底部填充 底部填充。可获得近五倍的改进 用于具有银颈(3.8 W / m-K)的金刚石填料颗粒。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号