首页> 外文会议>Annual symposium on Computational geometry >Improved Pointer Machine and I/O Lower Bounds for Simplex Range Reporting and Related Problems
【24h】

Improved Pointer Machine and I/O Lower Bounds for Simplex Range Reporting and Related Problems

机译:改进的指针机和I / O下界,用于单一范围报告和相关问题

获取原文

摘要

We investigate one of the fundamental areas in computational geometry: lower bounds for range reporting problems in the pointer machine and the external memory models. We develop new techniques that lead to new and improved lower bounds for simplex range reporting as well as some other geometric problems. Simplex range reporting is the problem of storing n points in a data structure such that the k points that lie inside a query simplex can be outputted efficiently. This is one of the fundamental and extensively studied problems in computational geometry. Currently, the best data structures for the problem achieve Q(n)+O(k) query time using O((n/Q(n))~d) space in which the O(.) notation either hides a polylogarith-mic or an n~ε factor for any constant ε > 0, (depending on the data structure and Q(n)). The best lower bound on this problem is due to Chazelle and Rosenberg who proved a space lower bound of Ω(n~(d-ε-dr)) for pointer machine data structures that can answer queries in O(n~r + k) time. For data structures with Q(n) + O(k) query time, we improve the space lower bound to Ω((n/Q(n))~d/2~(O(√(1/2)(log Q(n))))). Not only this reduces the overhead from polynomial to sub-polynomial, it also offers a smooth trade-off curve. For instance, for polylogarithmic values of Q(n), our lower bound is within a o(log n) factor of the conjectured trade-off curve. By a simple geometric transformation, we also improve the best lower bounds for the halfspace range reporting problem. Furthermore, we also study the external memory model and offer a new framework for proving lower bound in this model. For the first time we show that answering simplex range reporting queries with Q(n) + k/B I/Os requires Ω(B(n/(BQ(n)))~d/2~(O(√(1/2)(log Q(n))) space in which B is the block size.
机译:我们研究了计算几何学的基本领域之一:指针机器和外部存储器模型中范围报告问题的下限。我们开发了新技术,可为单面范围报告以及其他一些几何问题带来新的和改进的下界。单纯形范围报告是在数据结构中存储n个点的问题,这样可以有效输出位于查询单纯形内部的k个点。这是计算几何学中的基本问题和广泛研究的问题之一。当前,用于该问题的最佳数据结构使用O((n / Q(n))〜d)空间实现Q(n)+ O(k)查询时间,其中O(。)表示法隐藏了一个多对数或任何常数ε> 0的n〜ε因子(取决于数据结构和Q(n))。这个问题的最佳下界是由于Chazelle和Rosenberg证明了指针机数据结构的空间下界Ω(n〜(d-ε-dr))可以在O(n〜r + k)中回答查询时间。对于查询时间为Q(n)+ O(k)的数据结构,我们将空间下界提高到Ω((n / Q(n))〜d / 2〜(O(√(1/2)(log Q (n))))。这不仅减少了从多项式到子多项式的开销,而且还提供了一条平滑的折衷曲线。例如,对于Q(n)的多对数值,我们的下界在猜想的权衡曲线的o(log n)因子之内。通过简单的几何变换,我们还改善了半空间范围报告问题的最佳下限。此外,我们还研究了外部存储器模型,并提供了一个新的框架来证明该模型的下限。我们首次展示了使用Q(n)+ k / BI / Os来回答单纯形范围报告查询需要Ω(B(n /(BQ(n)))〜d / 2〜(O(√(1/2 )(log Q(n)))空间,其中B是块大小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号