首页> 外文会议>Annual conference on Neural Information Processing Systems >Q-MKL: Matrix-induced Regularization in Multi-Kernel Learning with Applications to Neuroimaging
【24h】

Q-MKL: Matrix-induced Regularization in Multi-Kernel Learning with Applications to Neuroimaging

机译:Q-MKL:矩阵诱导的正则化在多核学习中的应用到神经影像学

获取原文

摘要

Multiple Kernel Learning (MKL) generalizes SVMs to the setting where one simultaneously trains a linear classifier and chooses an optimal combination of given base kernels. Model complexity is typically controlled using various norm regularizations on the base kernel mixing coefficients. Existing methods neither regularize nor exploit potentially useful information pertaining to how kernels in the input set 'interact'; that is, higher order kernel-pair relationships that can be easily obtained via unsupervised (similarity, geodesics), supervised (correlation in errors), or domain knowledge driven mechanisms (which features were used to construct the kernel?). We show that by substituting the norm penalty with an arbitrary quadratic function Q (≥ )0, one can impose a desired covariance structure on mixing weights, and use this as an inductive bias when learning the concept. This formulation significantly generalizes the widely used 1- and 2-norm MKL objectives. We explore the model's utility via experiments on a challenging Neuroimaging problem, where the goal is to predict a subject's conversion to Alzheimer's Disease (AD) by exploiting aggregate information from many distinct imaging modalities. Here, our new model outperforms the state of the art (p-values « 10~(-3)). We briefly discuss ramifications in terms of learning bounds (Rademacher complexity).
机译:多重内核学习(MKL)将SVM推广到可以同时训练线性分类器并选择给定基础内核的最佳组合的设置。通常使用基础内核混合系数的各种范式正则化来控制模型复杂性。现有的方法既不规范化也不利用与输入集中的内核如何“交互”有关的潜在有用信息。也就是说,可以通过无监督(相似性,短程线),有监督(错误相关)或领域知识驱动的机制(用于构建内核的功能)轻松获得高阶内核对关系。我们表明,通过用任意二次函数Q(≥)0代替范数罚分,可以在混合权重上施加所需的协方差结构,并将其用作学习概念时的归纳偏差。该公式显着概括了广泛使用的1规范和2规范MKL物镜。我们通过一个具有挑战性的神经影像问题的实验来探索该模型的效用,该目标的目的是通过利用来自许多不同成像方式的综合信息来预测受试者向阿尔茨海默氏病(AD)的转化。在这里,我们的新模型优于最新技术(p值«10〜(-3))。我们根据学习范围(Rademacher复杂度)简要讨论分枝。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号