首页> 外文会议>Annual International Pittsburgh Coal Conference >DYNAMIC MAXIMIZATION OF OXYGEN YIELD IN AN ELEVATED-PRESSURE AIR SEPARATION UNIT USING LINEAR MULTIPLE MODEL PREDICTIVE CONTROL (MMPC) FRAMEWORK
【24h】

DYNAMIC MAXIMIZATION OF OXYGEN YIELD IN AN ELEVATED-PRESSURE AIR SEPARATION UNIT USING LINEAR MULTIPLE MODEL PREDICTIVE CONTROL (MMPC) FRAMEWORK

机译:线性多重模型预测控制(MMPC)框架在升压空气分离装置中动态产生最大的氧气

获取原文

摘要

In a typical air separation unit (ASU) utilizing either a simple gaseous oxygen (GOX) cycle or apumped liquid oxygen (PLOX) cycle, the flowrate of liquid nitrogen (LN2) stream connectinghigh-pressure and low-pressure ASU columns plays an important role in the total oxygen yield.It has been observed that this yield reaches a maximum at a certain optimal flowrate of LN2stream. At nominal full-load operation, the flowrate of LN2 stream is maintained near thisoptimum value, whereas at part-load conditions this flowrate is typically modified in proportionwith the load-change (oxygen demand) through a ratio/feed-forward controller. Due tononlinearity in the entire ASU process, the ratio-modified LN2 flowrate does not guarantee anoptimal oxygen yield at part-load conditions. This is further exacerbated when processdisturbances in form of “cold-box” heat-leaks enter the system. To address this problem ofdynamically maximizing the oxygen yield while the ASU undergoes a load-change and/or aprocess disturbance, a multiple model predictive control (MMPC) algorithm is proposed. Thisalgorithm uses linear step-response “blackbox” models surrounding the operating pointscorresponding to maximum oxygen yield points at different loads. It has been shown that at anyoperating point of the ASU, the MMPC algorithm, through model-weight calculation based onplant measurements, naturally and continuously selects the dominant model(s) corresponding tothe current plant state, while making control-move decisions that approach the maximum oxygenyield point. This dynamically facilitates less energy consumption in form of compressed feed-aircompared to a simple ratio control during load-swings. In addition, since a linear optimizationproblem is solved at each time step, the approach involves much less computational costcompared to a first-principle based nonlinear MPC.
机译:在典型的空气分离单元(ASU)中,利用简单的气态氧气(GOX)循环或 泵送液氧(PLOX)循环,液氮(LN2)流的流量连接 高压和低压ASU色谱柱在总氧气产量中起着重要作用。 已经观察到,在一定的最佳LN2流量下,该产量达到最大值 溪流。在标称满负荷运行时,LN2流的流量保持在此附近 最佳值,而在部分负载条件下,此流量通常按比例修改 通过比率/前馈控制器改变负荷(需氧量)。由于 在整个ASU过程中存在非线性,比例修正的LN2流量不能保证 在部分负荷条件下的最佳氧气产量。当处理过程进一步恶化时 “冷箱”热泄漏形式的干扰进入系统。为了解决这个问题 在ASU经历负载变化和/或 针对过程扰动,提出了一种多模型预测控制算法。这 该算法使用围绕工作点的线性阶跃响应“黑匣子”模型 对应于不同负载下的最大氧气屈服点。已经证明,在任何情况下 通过基于以下内容的模型权重计算,ASU的工作点即MMPC算法 进行工厂测量时,自然而连续地选择与 当前的工厂状态,同时做出接近最大氧气的控制决策 屈服点。以压缩的进气形式动态地减少能耗 与负载波动期间的简单比率控制相比。另外,由于线性优化 问题在每个时间步都得到解决,该方法涉及的计算量少得多 与基于第一原理的非线性MPC相比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号