首页> 外文会议>AIChE annual meeting >APPLICATION OF LINEAR MULTIPLE MODEL PREDICTIVE CONTROL (MMPC) FRAMEWORK TOWARDS DYNAMIC MAXIMIZATION OF OXYGEN YIELD IN AN ELEVATED-PRESSURE AIR SEPARATION UNIT
【24h】

APPLICATION OF LINEAR MULTIPLE MODEL PREDICTIVE CONTROL (MMPC) FRAMEWORK TOWARDS DYNAMIC MAXIMIZATION OF OXYGEN YIELD IN AN ELEVATED-PRESSURE AIR SEPARATION UNIT

机译:线性多重模型预测控制(MMPC)框架在升压空气分离装置中使氧气产量动态最大化的应用

获取原文
获取外文期刊封面目录资料

摘要

In a typical air separation unit (ASU) utilizing either a simple gaseous oxygen (GOX) cycle or apumped liquid oxygen (PLOX) cycle, the flowrate of liquid nitrogen (LN2) stream connectinghigh-pressure and low-pressure ASU columns plays an important role in the total oxygen yield.It has been observed that this yield reaches a maximum at a certain optimal flowrate of LN2stream. At nominal full-load operation, the flowrate of LN2 stream is maintained near thisoptimum value, whereas at part-load conditions this flowrate is typically modified in proportionwith the load-change (oxygen demand) through a ratio/feed-forward controller. Due tononlinearity in the entire ASU process, the ratio-modified LN2 flowrate does not guarantee anoptimal oxygen yield at part-load conditions. This is further exacerbated when processdisturbances in form of "cold-box" heat-leaks enter the system. To address this problem ofdynamically maximizing the oxygen yield while the ASU undergoes a load-change and/or aprocess disturbance, a multiple model predictive control (MMPC) algorithm is proposed. Thisapproach has been used in previous studies to handle large ramp-rates of oxygen demand posedby the gasifier in an IGCC plant. In this study, the proposed algorithm uses linear step-response"blackbox" models surrounding the operating points corresponding to maximum oxygen yieldpoints at different loads. It has been shown that at any operating point of the ASU, the MMPCalgorithm, through model-weight calculation based on plant measurements, naturally andcontinuously selects the dominant model(s) corresponding to the current plant state, whilemaking control-move decisions that approach the maximum oxygen yield point. Thisdynamically facilitates less energy consumption in form of compressed feed-air compared to asimple ratio control during load-swings. In addition, since a linear optimization problem issolved at each time step, the approach involves much less computational cost compared to a firstprinciplebased nonlinear MPC.
机译:在典型的空气分离单元(ASU)中,利用简单的气态氧气(GOX)循环或 泵送液氧(PLOX)循环,液氮(LN2)流的流量连接 高压和低压ASU色谱柱在总氧气产量中起着重要作用。 已经观察到,在一定的最佳LN2流量下,该产量达到最大值 溪流。在标称满负荷运行时,LN2流的流量保持在此附近 最佳值,而在部分负载条件下,此流量通常按比例修改 通过比率/前馈控制器改变负荷(需氧量)。由于 在整个ASU过程中存在非线性,比例修正的LN2流量不能保证 在部分负荷条件下的最佳氧气产量。当处理过程进一步恶化时 “冷箱”热泄漏形式的干扰进入系统。为了解决这个问题 在ASU经历负载变化和/或 针对过程扰动,提出了一种多模型预测控制算法。这 以前的研究中已经使用这种方法来处理所提出的大的氧气需求斜率 由IGCC工厂中的气化炉进行。在这项研究中,所提出的算法使用线性阶跃响应 与最大氧气产量相对应的工作点周围的“黑匣子”模型 指向不同的负载。事实证明,在ASU的任何操作点上,MMPC 算法,通过基于工厂测量值的模型权重计算,自然而然地 持续选择与当前工厂状态相对应的主导模型,而 做出接近最大氧气屈服点的控制决策。这 与压缩空气相比,动态地减少了压缩空气的能量消耗 负载波动期间的简单比率控制。另外,由于线性优化问题是 在每个时间步上求解,与第一原理相比,该方法所涉及的计算成本要低得多 基于非线性MPC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号