首页> 外文会议>International conference on nuclear engineering;ASME power conference >ON THE IMMERSED BOUNDARY METHOD: FINITE ELEMENT VERSUS FINITE VOLUME APPROACH
【24h】

ON THE IMMERSED BOUNDARY METHOD: FINITE ELEMENT VERSUS FINITE VOLUME APPROACH

机译:关于浸没边界法:有限元与有限体积法

获取原文

摘要

A projection approach is presented for the coupled system of time-dependent incompressible Navier-Stokes equations in conjunction with the Immersed Boundary Method (IBM) for solving fluid flow problems in the presence of rigid objects not represented by the underlying mesh. The IBM allows solving the flow for geometries with complex objects without the need of generating a body fitted mesh. The no-slip boundary constraint is satisfied applying a boundary force at the immersed body surface. Using projection and interpolation operators from the fluid volume mesh to the solid surface mesh (i.e., the "immersed" boundary) and vice versa, it is possible to impose the extra constraint to the incompressible Navier-Stokes equations as a Lagrange multiplier in a fashion very similar to the effect pressure has on the momentum equations to satisfy the divergence-free constraint. The projection operation removes the immersed boundary surface slip and non-divergence-free components of the velocity field. The boundary force is determined implicitly at the inner iterations of the fractional step method implemented. No constitutive relations for the immersed boundary objects fluid interaction are required, allowing the formulation introduced to use larger CFL numbers compared to previous methodologies. An overview of the immersed boundary approach is presented showing third order accuracy in space and second order accuracy in time when the simulation results for the Taylor-Green decaying vortex are compared to the analytical solution using the Immersed Finite Element Method (IFEM). For the Immersed Finite Volume Method (IFVM) a ghost-cell approach is used. Second order accuracy in space and first order accuracy in time are obtained when the Taylor-Green decaying vortex test case is compared to the analytical solution. The numerical results are compared with the analytical solution also for adaptive mesh refinement (for the IFEM) showing an excellent error reduction. Computations were performed using IFEM and IFVM approaches for the time-dependent incompressible Navier-Stokes equations in a two-dimensional flow past a stationary circular cylinder at Re = 20, and 40, where shedding effects are not present. The drag coefficient and the recirculation length error compared to the experimental data is less than 3-4%. Simulations for the two-dimensional flow past a stationary circular cylinder at Re = 100 were also performed. For Re numbers above 46, unsteadiness generates vortex shedding, and an unsteady flow regime is present. The results shown are in excellent quantitative and qualitative agreement with the flow pattern expected. The numerical results obtained with the discussed IFEM and IFVM were also compared against other immersed boundary methodologies available in literature and simulation performed with the commercial computational fluid dynamics code STAR-CCM+/V5.02.009 for which a body fitted finite volume numerical discretization was used. The benchmark showed that the numerical results obtained with the implemented immersed boundary methods are very close to those obtained from STAR-CCM+ with a very fine mesh and in a good agreement with the other IBM techniques. The IBM based of finite element approach is numerically more accurate than the IBM based on finite volume discretization. In contrast, the latter is computationally more efficient than the former.
机译:针对与时间相关的不可压缩Navier-Stokes方程的耦合系统,结合浸入边界方法(IBM),提出了一种投影方法,用于解决在没有底层网格表示的刚性物体的情况下的流体流动问题。 IBM允许解决具有复杂对象的几何流程,而无需生成适合人体的网格。在浸没的车身表面施加边界力,可以满足防滑边界约束的要求。使用从流体体积网格到固体曲面网格(即“沉浸式”边界)的投影和插值运算符,反之亦然,可以将不可约束的Navier-Stokes方程作为Lagrange乘数强加额外约束非常类似于压力对动量方程的影响,以满足无散度约束。投影操作消除了浸入的边界表面滑移和速度场的非散度分量。边界力是在实施的分步方法的内部迭代中隐式确定的。不需要沉浸边界物体流体相互作用的本构关系,因此与以前的方法相比,允许引入的配方使用更大的CFL数。提出了浸入边界方法的概述,显示了将泰勒-格林衰变涡旋的模拟结果与使用浸入有限元法(IFEM)的分析解决方案进行比较时在空间上的三阶精度和在时间上的二阶精度。对于浸入有限体积法(IFVM),使用了幻影单元法。将泰勒-格林衰变涡旋测试案例与分析解决方案进行比较,可以获得空间的二阶精度和时间的一阶精度。数值结果也与解析解决方案进行了比较,还针对自适应网格细化(对于IFEM)进行了显示,从而显着降低了误差。使用IFEM和IFVM方法对经过固定圆柱的二维流动中随时间变化的不可压缩Navier-Stokes方程进行计算,其中Re = 20和40,其中不存在脱落效应。与实验数据相比,阻力系数和再循环长度误差小于3-4%。还对在Re = 100时通过固定圆柱的二维流动进行了模拟。对于大于46的Re数,不稳定会产生涡旋脱落,并且存在不稳定流态。显示的结果与预期的流动模式极为吻合。还将通过讨论的IFEM和IFVM获得的数值结果与文献中可用的其他浸入边界方法进行比较,并使用商业计算流体力学代码STAR-CCM + / V5.02.009进行了仿真,其中使用了有限体积数值离散化的人体。基准测试表明,使用已实现的浸入边界方法获得的数值结果与从STAR-CCM +获得的数值结果非常接近,具有非常精细的网格,并且与其他IBM技术非常吻合。基于IBM的有限元方法在数值上比基于有限体积离散化的IBM更准确。相反,后者在计算上比前者更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号