首页> 外文会议>Australasian fluid mechanics conference >Cavitation Inception and Bubble Dynamics in Vortical Flows Steven
【24h】

Cavitation Inception and Bubble Dynamics in Vortical Flows Steven

机译:涡流的空化初始化和泡沫动力学史蒂文

获取原文
获取外文期刊封面目录资料

摘要

The liquid in the core of a vortex can be at a significantly lower pressure than the surrounding fluid, and possibly in tension. Small bubbles (nuclei) exposed to this tension can rapidly enlarge to fill the radial extent of the vortex core and then grow along the vortex axis. Such vortex cavitation can readily occur in the shed vortices of lifting surfaces or in turbulent shear flow such as jets and wakes. Incipient and developed vortex cavitation bubbles can exhibit complex dynamics as the bubble interacts with the surrounding flow. As the bubble changes volume within the vortex core, the vorticity distribution of the surrounding flow is modified, which then changes the pressures at the bubble interface. This coupling can produce volume oscillations with a period of the order of the vortex time scale, τ_v = 2πr_c/u_(θmax), where r_c is the vortex core radius and u_(θmax) is its maximum tangential velocity of the vortex. However, the volume oscillation amplitude and frequency are quite sensitive to variations in the vortex properties, the rate and magnitude of the local pressure core pressure, and the nuclei's critical pressure. The axial and radial growth of elongated cavitation bubbles is also strongly coupled, especially near the axial extents of the bubble. Such complex growth, oscillation, and collapse of vortex cavitation bubbles can lead to both broadband and tonal sound emissions. Moreover, it is possible to understand the formation and dynamics of vortex cavitation as the result of vortex dynamics, vortex breakdown, and vortex-vortex interactions. And, finally, it may be possible to mitigate the inception of vortex cavitation on lifting surfaces through both passive and active means.
机译:涡旋的核心中的液体可以比周围的流体显着较低,并且可能在张力下。暴露于该张力的小气泡(核)可以迅速扩大以填充涡旋芯的径向范围,然后沿着涡旋轴生长。这种涡旋空化可以容易地发生在升降表面的棚涡流中,或者诸如喷射器和唤醒的湍流剪切流动中。初期和开发的涡旋空化气泡可以表现出复杂的动态,因为气泡与周围流动相互作用。随着气泡在涡流核心内的体积变化,修改了周围流动的涡度分布,然后改变气泡界面处的压力。该耦合可以产生具有涡流时间尺度的句点的音量振荡,τ_v=2πr_c/ u_(θmax),其中r_c是涡旋核心半径,U_(θmax)是其最大的涡流的切向速度。然而,体积振荡幅度和频率对涡流性质的变化,局部压力核心压力的速率和幅度以及核的临界压力非常敏感。细长空化气泡的轴向和径向生长也强烈耦合,特别是在气泡的轴向范围附近。这种复杂的生长,振荡和涡旋空心气泡的崩溃可以导致宽带和色调的声音。此外,由于涡流动力学,涡流分解和涡旋涡流相互作用,可以了解涡流空化的形成和动态。最后,可以通过被动和有源装置减轻涡旋空穴在提升表面上的初始化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号