首页> 外文会议>World biomaterials congress >Immunoactive dna-tethered nanocomplexes of antigen-cpg and iron-oxide nanoparticles as potential cancer nanovaccines
【24h】

Immunoactive dna-tethered nanocomplexes of antigen-cpg and iron-oxide nanoparticles as potential cancer nanovaccines

机译:抗原-CpG和氧化铁纳米颗粒的免疫活性DNA系纳米复合物作为潜在的癌症纳米虫草

获取原文

摘要

Introduction: Cancer vaccines hold promising potential for cancer imunotherapy due to their systemic action, high specificity, limited toxicity and treatment durability. However, several critical challenges impede realization of cancer vaccines in the clinic. These challenges include inadequate immunological priming and inefficient in-vivo delivery to the lymph nodes. To address these challenges, we set out to develop a new two-component nanovaccine. This nanovaccine is composed of CpG-modified model antigen ovalbumin and anti-CpG-modified iron-oxide nanoparticles; components that are tethered through complementary single stranded CpG and anti-CpG DNA. We hypothesized that the covalent modification of the model antigen ovalbumin (OVA) with the immunostimulatory adjuvant CpG would improve immunological priming, while tethering to iron-oxide nanoparticles (NP) would serve as a lymph node delivery vehicle. Herein, we present evidence for the formation and in-vitro functionality of OVA-CpG/anti-CpG-NP nanocomplexes and initial proof-of-concept delivery in-vivo. Materials and Methods: The model nanovaccine was formulated in three stages as depicted in Figure 1. OVA-CpG conjugates were analyzed with anion exchange chromatography and SYBR Gold and BCA quantitative spectrophotometric assays for single stranded DNA (ssDNA) and protein, respectively. Complexation between conjugates and iron-oxide nanoparticles was verified with agarose gel electrophoresis and analysis of zeta-potential. The functionality of the nanovaccine was analyzed with the B3Z T-cell hybridoma assay, a colorimetric assay for ovalbumin-specific T-cell activation in-vitro. Delivery to lymph nodes was performed by subcutaneous injections into the footpad of C57BL/6 mice. Nanoparticles were quantified in excised lymph nodes by Electron Paramagnetic Resonance (EPR) spectroscopy. Results and Discussion: The successful formation of OVA-CpG conjugates was confirmed with anion exchange chromatography and spectrophotometric analysis. The elution of OVA-CpG from the High Q anion exchange column required significantly higher concentrations of NaCl as compared to free OVA (p = 0.001). Furthermore, the SYBR Gold assay specific for ssDNA revealed a significantly higher fluorescent signal for OVA-CpG conjugates as compared to free OVA (p = 0.03). Quantification of ssDNA and protein in Ova-CpG conjugates further confirmed that the conjugates could be formed with defined degree of CpG modification (~1,2 and 3 mote CpG/mole OVA). Nanoparticle functionalization with anti-CpG and subsequent complexation with OVA-CpG to form OVA-CpG/anti-CpG-NP nanocomplexes was confirmed by agarose gel electrophoresis and zeta-potential (-1,8±0.5 mV, -27±1 mV and -40 ±2 mV for NP, anti-CpG-NP, and OVA-CpG/anti-CpG-NP, respectively, p<0.001). Functional analysis revealed that the OVA-CpG conjugates (1 mole CpG/mole OVA) and OVA-CpG/anti-CpG-NP nanocomplexes enhanced OVA-specific T cell activation by 2.5-fold (23 ± 1 mU, p<0.001) and 4-fold (37±5 mU, p<0.001), respectively, as compared to free ovalbumin (9±1 mU). Additionally, EPR quantification revealed delivery of approximately 25% of a subcutaneously injected dose of nanoparticles into axillary lymph nodes in mice 24 hours post-injection. Conclusion: Results presented confirm successful preparation of OVA-CpG/anti-CpG-NP immunoactive DNA-tethered nanocomplexes. In addition, functional in vitro analysis and initial delivery results suggest that these nanocomplexes may combine two highly desirable cancer vaccine properties - enhanced immunological priming and enhanced lymph node delivery. The reported nanocomplexation method could pave the way to development of new potent cancer nanovaccines and warrants further investigation.
机译:介绍:由于其系统性动作,高特异性,有限的毒性和治疗耐用性,癌症疫苗占据癌症内外疗法的可能性。然而,几种关键挑战妨碍了临床癌症疫苗的实现。这些挑战包括对淋巴结的免疫初步和效率低下的含量不足。为了解决这些挑战,我们旨在开发一个新的双组分纳维宫。该纳米宫由CPG改性模型抗原卵蛋白和抗CPG改性的氧化铁纳米颗粒组成;通过互补的单链CPG和抗CPG DNA系重束的组分。我们假设模型抗原卵蛋白(OVA)与免疫刺激佐剂CPG的共价修饰将改善免疫灌注,而氧化铁纳米颗粒(NP)的束缚将用作淋巴结输送载体。在此,我们提出了ova-cpg /抗CpG-np纳米复合物的形成和体外功能的证据和体内初始概念递送。材料和方法:用阴离子交换色谱和SYBR金和BCA定量分光光度法分析单链DNA(SSDNA)和蛋白质分析了纳米宫内容的三个阶段。用琼脂糖凝胶电泳验证缀合物和氧化铁纳米颗粒之间的络合和Zeta潜力的分析。用B3Z T细胞杂交瘤测定分析纳米宫的官能度,在体外测定卵霉素特异性T细胞活化的比色测定。通过皮下注射进入C57BL / 6小鼠的脚板进行淋巴结递送。通过电子顺磁共振(EPR)光谱法量化纳米颗粒。结果与讨论:用阴离子交换色谱和分光光度分析证实了OVA-CPG缀合物的成功形成。与游离OVA相比,来自高Q阴离子交换柱的OVA-CPG的洗脱浓度明显更高的NaCl(p = 0.001)。此外,与游离OVA相比,对SSDNA特异的SYBR金测定揭示了OVA-CPG缀合物的显着更高的荧光信号(P = 0.03)。 OVA-CPG缀合物中SsDNA和蛋白质的定量进一步证实了缀合物可以用定义的CPG改性(〜1,2和3个MOTE CPG / MORE OVA)形成。通过琼脂糖凝胶电泳和Zeta-电位确认用抗CPG与OVA-CPG络合以形成OVA-CPG /抗CPG-NP纳米复合物的纳米粒子官能化并用ZETA - 电位确认(-1,8±0.5mV,-27±1 mV和用于NP,抗CPG-NP和OVA-CPG /抗CPG-NP的-40±2mV,P <0.001)。功能分析显示,OVA-CPG缀合物(1摩尔CpG /摩尔OVA)和OVA-CPG /抗CPG-NP纳米复合分布增强了ova特异性T细胞活化2.5倍(23±1μm,p <0.001)和与游离卵烧蛋白(9±1μm)相比,分别为4倍(37±5μm,p <0.001)。另外,EPR定量揭示了在注射后24小时24小时将约25%的皮下注射剂量的纳米颗粒中的纳米颗粒中的纳米颗粒中的约25%递送到腋生淋巴结中。结论:结果表明,确认成功制备OVA-CPG /抗CPG-NP免疫活性DNA系型纳米复合物。此外,功能性在体外分析和初始递送结果表明,这些纳米复合物可以组合两个非常理想的癌症疫苗性质 - 增强的免疫灌注和增强的淋巴结输送。报告的纳米复用方法可以铺平新强化癌症纳维奇的发展,并认证进一步调查。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号