首页> 外文会议>ASME international conference on energy sustainability >MICRO- AND NANO-STRUCTURED CATALYTIC REACTOR FOR BIOFUEL REFORMING IN A SOLAR COLLECTOR
【24h】

MICRO- AND NANO-STRUCTURED CATALYTIC REACTOR FOR BIOFUEL REFORMING IN A SOLAR COLLECTOR

机译:用于太阳能收集器的生物燃料改革的微型和纳米结构催化反应器

获取原文

摘要

In this study, a novel flow-based method is presented to place catalytic nanoparticles into a reactor by sol-gelation of a porous ceramic consisting of copper-based nanoparticles, silica sand, ceramic binder, and a gelation agent. This method allows for the placement of a liquid precursor containing the catalyst into the final reactor geometry without the need of impregnating or coating of a substrate with the catalytic material. The so generated foam-like porous ceramic shows properties highly appropriate for use as catalytic reactor material, e.g., reasonable pressure drop due to its porosity, high thermal and catalytic stability, and excellent catalytic behavior.The catalytic activity of micro-reactors containing this foam-like ceramic is tested in terms of their ability to convert alcoholic biofuel (e.g. methanol) to a hydrogen-rich gas mixture with low concentrations of carbon monoxide (up to 75% hydrogen content and less than 0.2% CO, for the case of methanol). This gas mixture is subsequently used in a low-temperature fuel cell, converting the hydrogen directly to electricity. A low concentration of CO is crucial to avoid poisoning of the fuel cell catalyst. Since conventional Polymer Electrolyte Membrane (PEM) fuel cells require CO concentrations far below 100 ppm and since most methods to reduce the mole fraction of CO (such as Preferential Oxidation or PROX) have CO conversions of up to 99%, the alcohol fuel reformer has to achieve initial CO mole fractions significantly below 1%. The catalyst and the porous ceramic reactor of the present study can successfully fulfill this requirement.The results of the present study confirm that product gas mixtures with up to 75% hydrogen content and less than 0.2% CO content can be achieved, which is an excellent result. The reactor temperature can be kept as low as 220°C while obtaining a methanol conversion of up to 70%. The used PROX catalyst showed selective CO conversion rates above 99.5% for temperatures between 80 and 100°C in presence of large molar fractions of H_2O and CO_2.
机译:在该研究中,提出了一种新的流动的方法,以通过由铜基纳米粒子,二氧化硅砂,陶瓷粘合剂和凝胶化剂组成的多孔陶瓷通过溶胶 - 凝胶化将催化纳米颗粒将催化纳米颗粒置于反应器中。该方法允许将含有催化剂的液体前体置于最终反应器几何形状中,而不需要用催化材料浸渍或涂覆基材。如此产生的泡沫状多孔陶瓷显示出高适合用作催化反应器材料的特性,例如,由于其孔隙率,高热和催化稳定性以及优异的催化行为而具有合理的压降。含有这种泡沫的微量反应器的催化活性在它们的能力转化含酒精生物燃料(例如甲醇)至富含氢气混合物的能力方面测试的陶瓷,对于甲醇的含量低浓度的一氧化碳(高达75%的氢含量和小于0.2%CO) )。随后在低温燃料电池中使用该气体混合物,将氢直接转化为电力。低浓度的CO对于避免燃料电池催化剂中毒至关重要。由于常规聚合物电解质膜(PEM)燃料电池需要远低于100ppm的CO浓度,并且由于大多数减少CO的摩尔分数(例如优先氧化或PROX)的方法具有高达99%的CO转化,因此酒精燃料重整器具有实现初始CO摩尔分数明显低于1%。本研究的催化剂和多孔陶瓷反应器可以成功地满足该要求。本研究结果证实,产品气体混合物可实现高达75%的氢含量和小于0.2%的CO含量,这是一种优异的结果。反应器温度可以保持低至220℃,同时获得高达70%的甲醇转化率。在存在大摩尔分数的H_2O和CO_2的情况下,使用过的PRX催化剂在80至100℃的温度下,选择性CO转化率高于99.5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号