首页> 外文会议>ASME international conference on energy sustainability >MICRO- AND NANO-STRUCTURED CATALYTIC REACTOR FOR BIOFUEL REFORMING IN A SOLAR COLLECTOR
【24h】

MICRO- AND NANO-STRUCTURED CATALYTIC REACTOR FOR BIOFUEL REFORMING IN A SOLAR COLLECTOR

机译:用于太阳能收集器中生物燃料重整的微结构和纳米结构催化反应器

获取原文

摘要

In this study, a novel flow-based method is presented to place catalytic nanoparticles into a reactor by sol-gelation of a porous ceramic consisting of copper-based nanoparticles, silica sand, ceramic binder, and a gelation agent. This method allows for the placement of a liquid precursor containing the catalyst into the final reactor geometry without the need of impregnating or coating of a substrate with the catalytic material. The so generated foam-like porous ceramic shows properties highly appropriate for use as catalytic reactor material, e.g., reasonable pressure drop due to its porosity, high thermal and catalytic stability, and excellent catalytic behavior.The catalytic activity of micro-reactors containing this foam-like ceramic is tested in terms of their ability to convert alcoholic biofuel (e.g. methanol) to a hydrogen-rich gas mixture with low concentrations of carbon monoxide (up to 75% hydrogen content and less than 0.2% CO, for the case of methanol). This gas mixture is subsequently used in a low-temperature fuel cell, converting the hydrogen directly to electricity. A low concentration of CO is crucial to avoid poisoning of the fuel cell catalyst. Since conventional Polymer Electrolyte Membrane (PEM) fuel cells require CO concentrations far below 100 ppm and since most methods to reduce the mole fraction of CO (such as Preferential Oxidation or PROX) have CO conversions of up to 99%, the alcohol fuel reformer has to achieve initial CO mole fractions significantly below 1%. The catalyst and the porous ceramic reactor of the present study can successfully fulfill this requirement.The results of the present study confirm that product gas mixtures with up to 75% hydrogen content and less than 0.2% CO content can be achieved, which is an excellent result. The reactor temperature can be kept as low as 220°C while obtaining a methanol conversion of up to 70%. The used PROX catalyst showed selective CO conversion rates above 99.5% for temperatures between 80 and 100°C in presence of large molar fractions of H_2O and CO_2.
机译:在这项研究中,提出了一种新颖的基于流动的方法,该方法通过将由铜基纳米颗粒,硅砂,陶瓷粘合剂和胶凝剂组成的多孔陶瓷溶胶-凝胶化,将催化纳米颗粒放入反应器中。该方法允许将包含催化剂的液体前体放置到最终反应器几何形状中,而无需用催化材料浸渍或涂覆基质。如此生成的泡沫状多孔陶瓷显示出非常适合用作催化反应器材料的特性,例如由于其孔隙率,高的热和催化稳定性以及出色的催化性能而导致的合理压降。含有这种泡沫的微反应器的催化活性对类陶瓷进行了测试,使其能够将含酒精的生物燃料(例如甲醇)转化为低浓度一氧化碳(氢含量最高为75%且二氧化碳含量低于0.2%)的富氢气体混合物)。该气体混合物随后用于低温燃料电池中,将氢气直接转化为电能。低浓度的CO对于避免燃料电池催化剂中毒至关重要。由于常规的聚合物电解质膜(PEM)燃料电池需要的CO浓度远低于100 ppm,并且由于大多数降低CO摩尔分数的方法(例如优先氧化或PROX)具有高达99%的CO转化率,因此酒精燃料重整器具有以获得低于1%的初始CO摩尔分数。本研究的催化剂和多孔陶瓷反应器可以成功地满足这一要求。本研究的结果证实,可以实现氢含量高达75%且CO含量低于0.2%的产物气体混合物,这是极好的结果。反应器温度可以保持低至220°C,同时获得高达70%的甲醇转化率。所用的PROX催化剂在H_2O和CO_2的摩尔分数较高的情况下,在80至100°C之间的温度下,选择性的CO转化率超过99.5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号