首页> 外文会议>AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition >Inlet Flow Control Technology: Learning from History, Reinventing the Future
【24h】

Inlet Flow Control Technology: Learning from History, Reinventing the Future

机译:进口流量控制技术:汲取历史,重塑未来

获取原文

摘要

The history, not only of air intake development, but of inlet flow control technology in turbine-engine powered aircraft is written in museum hardware from the P-59 to the YF-22 (e.g., USAF Museum). Inlet lines in all historic and current transonic/supersonic aircraft systems testify to the necessary control of inlet-related boundary layer in reliable high speed flight. In this paper the evolution of inlet flow control design features is discussed and related to the need for reduced inlet drag, especially inlet bleed drag, in future aircraft. Inlet boundary layer control will still be required to achieve lower drag inlet designs, but recent R&D suggests that boundary layers in air intake adverse pressure gradients can be controlled in many cases by sub-boundary-layer vortex generators that do not involve having to oversize the inlet in order bleed off and dispose of the flow needed for control. Inlet development over the past 50 years or so has been as much an experimental adventure as a design science. It has required enormous amounts of large scale wind tunnel and even flight test refinement to close on systems designs that have reasonable performance at an acceptable cost. What the authors suggest is that significant, even substantial, savings in the time and cost for inlet and inlet flow control design/development can be realized if we make proper use of a combination of 3-D viscous CFD performance predictions together with carefully crafted small-scale experimental tests of inlet sub-components and relevant flow control (both bleed and micro-vg) physics demonstrations. The consequent improvement of analytical predictions is expected to reduce the need for validation experiments in large-to-full-scale wind tunnel environments. These advanced methodologies will dramatically reduce the need for large/full scale component/subsystem testing, using such tests sparingly for validation, as opposed to extended, expensive developmental testing.
机译:从P-59到YF-22(例如,美国空军博物馆),博物馆硬件中不仅记录了进气口发展的历史,而且还介绍了涡轮发动机飞机的进气流量控制技术的历史。所有历史和当前的跨音速/超音速飞机系统中的进气管路都证明了在可靠的高速飞行中对进气相关边界层的必要控制。在本文中,讨论了进气流量控制设计功能的演变,并涉及到在未来飞机中减少进气阻力(尤其是进气泄气阻力)的需求。仍然需要控制进气道边界层,以实现较低的进气道设计,但最新的研究表明,在许多情况下,进气边界层的负压梯度可以通过亚边界层涡流发生器来控制,而不必涉及加大进气道的尺寸。以便排空并处置控制所需的流量。在过去的50年左右的时间里,进气口的发展与设计科学一样,是一次实验性的冒险。它需要大量的大型风洞,甚至需要完善飞行测试,才能以可接受的成本完成具有合理性能的系统设计。作者的建议是,如果我们适当地结合使用3-D粘性CFD性能预测和精心制作的小型CFD性能预测,则可以实现进口和进口流量控制设计/开发的时间甚至成本上的大量节省,甚至是大量节省。入口子组件的大规模实验测试和相关的流量控制(排气和微型vg)物理演示。预计分析结果的改善将减少在大型到大型风洞环境中进行验证实验的需要。与扩展的,昂贵的开发测试相反,这些先进的方法将大大减少对大型/大型组件/子系统测试的需求,而将此类测试很少用于验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号