首页> 外文会议>ASME turbo expo >LOW-ORDER MODELLING OF THE RESPONSE OF DUCTED FLAMES IN ANNULAR GEOMETRIES
【24h】

LOW-ORDER MODELLING OF THE RESPONSE OF DUCTED FLAMES IN ANNULAR GEOMETRIES

机译:环形几何体中火焰响应的低阶建模

获取原文

摘要

The adoption of lean premixed prevaporised combustion systems can reduce NO_X emissions from gas turbines, but unfortunately also increases their susceptibility to thermoacoustic instabilities. Initially, acoustic waves can produce heat release fluctuations by a variety of mechanisms, often by perturbing the equivalence ratio. If correctly phased, heat release fluctuations can subsequently generate more acoustic waves, which at high amplitude can result in significant structural damage to the com-bustor. The prediction of this phenomenon is of great industrial interest. In previous work, we have coupled a physics based, kinematic model of the flame with a network model to provide the planar acoustic response necessary to close the feedback loop and predict the onset and amplitude of thermoacoustic instabilities in a lab-scale, axisymmetric single burner combustor. The advantage of a time domain approach is that the modal interaction, the influence of harmonics, and flame saturation can be investigated. This paper extends this approach to more realistic, annular geometries, where both planar and circumferential modes must be considered.In lean premixed prevaporised combustors, fluctuations in equivalence ratio have been shown to be a dominant cause of unsteady combustion. These can occur, for example, due to velocity perturbations in the premix ducts, which can lead to equivalence ratio fluctuations at the fuel injectors, which are subsequently convected downstream to the flame surfaces. Here, they can perturb the heat release by locally altering the flame speed, enthalpy of combustion, and, indirectly, the flame surface area.In many gas turbine designs, particularly aeroengines, the geometries are composed of a ring of premix ducts linking a plenum and an annular combustor. The most unstable modes are often circumferential modes. The network model is used to characterise the flow response of the geometry to heat fluctuations at an appropriate location, such as the fuel injectors. The heat release at each flame holder is determined in the time domain using the kinematic flame model derived, as a function of the flow perturbations in the premix duct. This approach is demonstrated for an annular ring of burners on a in a simple geometry. The approach is then extended to an industrial type gas turbine combustor, and used to predict the limit cycle amplitudes.
机译:稀薄的预混预蒸发燃烧系统的采用可以减少燃气轮机的NO_X排放,但不幸的是,还增加了它们对热声不稳定性的敏感性。最初,声波可以通过各种机制产生热量释放波动,通常是通过扰动当量比来实现的。如果正确定相,放热波动会随后产生更多的声波,在高振幅下会导致燃烧器的重大结构损坏。对这种现象的预测具有重大的工业意义。在先前的工作中,我们将基于火焰的基于运动学的运动学模型与网络模型耦合在一起,以提供必要的平面声响应,以闭合反馈回路并预测实验室规模的轴对称单燃烧器中热声不稳定性的发生和幅度。燃烧室。时域方法的优点是可以研究模态相互作用,谐波的影响和火焰饱和度。本文将这种方法扩展到更现实的环形几何体,其中必须同时考虑平面模式和圆周模式。在稀薄的预混预蒸发燃烧器中,当量比的波动已被证明是不稳定燃烧的主要原因。这些可能例如由于预混管道中的速度扰动而发生,这可能导致在燃料喷射器处的当量比波动,该波动随后被对流到火焰表面的下游。在这里,它们可以通过局部改变火焰速度,燃烧焓以及间接改变火焰表面积来扰动热量释放。在许多燃气轮机设计中,特别是航空发动机,其几何形状由连接增压室的一圈预混合风道组成。和一个环形燃烧室。最不稳定的模式通常是圆周模式。网络模型用于表征几何形状在适当位置(例如喷油器)对热波动的流动响应。根据所产生的运动火焰模型,根据预混管道中的流量扰动,在时域中确定每个火焰保持器处的热量释放。对于简单形状的a环形燃烧器环,已经证明了这种方法。然后将该方法扩展到工业型燃气轮机燃烧器,并用于预测极限循环幅度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号