首页> 外文会议>ASME Turbo Expo >LOW-ORDER MODELLING OF THE RESPONSE OF DUCTED FLAMES IN ANNULAR GEOMETRIES
【24h】

LOW-ORDER MODELLING OF THE RESPONSE OF DUCTED FLAMES IN ANNULAR GEOMETRIES

机译:环形几何形状导管火焰响应的低阶建模

获取原文

摘要

The adoption of lean premixed prevaporised combustion systems can reduce NO_x emissions from gas turbines, but unfortunately also increases their susceptibility to thermoacoustic instabilities. Initially, acoustic waves can produce heat release fluctuations by a variety of mechanisms, often by perturbing the equivalence ratio. If correctly phased, heat release fluctuations can subsequently generate more acoustic waves, which at high amplitude can result in significant structural damage to the combustor. The prediction of this phenomenon is of great industrial interest. In previous work, we have coupled a physics based, kinematic model of the flame with a network model to provide the planar acoustic response necessary to close the feedback loop and predict the onset and amplitude of thermoacoustic instabilities in a lab-scale, axisymmetric single burner combustor. The advantage of a time domain approach is that the modal interaction, the influence of harmonics, and flame saturation can be investigated. This paper extends this approach to more realistic, annular geometries, where both planar and circumferential modes must be considered. In lean premixed prevaporised combustors, fluctuations in equivalence ratio have been shown to be a dominant cause of unsteady combustion. These can occur, for example, due to velocity perturbations in the premix ducts, which can lead to equivalence ratio fluctuations at the fuel injectors, which are subsequently convected downstream to the flame surfaces. Here, they can perturb the heat release by locally altering the flame speed, enthalpy of combustion, and, indirectly, the flame surface area. In many gas turbine designs, particularly aeroengines, the geometries are composed of a ring of premix ducts linking a plenum and an annular combustor. The most unstable modes are often circumferential modes. The network model is used to characterise the flow response of the geometry to heat fluctuations at an appropriate location, such as the fuel injectors. The heat release at each flame holder is determined in the time domain using the kinematic flame model derived, as a function of the flow perturbations in the premix duct. This approach is demonstrated for an annular ring of burners on a in a simple geometry. The approach is then extended to an industrial type gas turbine combustor, and used to predict the limit cycle amplitudes.
机译:通过精益预混的液化燃烧系统可以减少燃气轮机的NO_X排放,但遗憾的是还增加了对热声无稳定性的易感性。最初,声波可以通过各种机制产生热释放波动,通常通过扰动等效率。如果正确相位,则随后可以产生更多的声波,其在高振幅下可能导致燃烧器的显着结构损坏。对这种现象的预测具有巨大的工业利益。在以前的工作中,我们已经耦合了一种基于火焰的物理学模型,具有网络模型,以提供关闭反馈回路所需的平面声反应,并预测实验室标度,轴对称单刻器中热声​​稳定性的起始和幅度燃烧器。时域方法的优点是模态相互作用,谐波的影响和火焰饱和度可以研究。本文将这种方法扩展到更现实的环形几何形状,其中必须考虑平面和周向模式。在精益预混的液化燃烧器中,等效比的波动已被证明是不稳定燃烧的主要原因。例如,由于预混管中的速度扰动,这可以发生这种情况,这可以导致燃料喷射器的等效比波动,随后将在下游对火焰表面进行。在这里,它们可以通过局部地改变火焰速度,燃烧焓,间接地,火焰表面区域来扰流热释放。在许多燃气轮机设计中,特别是航空发动机,几何形状由连接增压室和环形燃烧器的预混管环组成。最不稳定的模式通常是圆周模式。网络模型用于表征几何形状的流动响应,以在适当的位置处热波动,例如燃料喷射器。每个火焰保持器处的热释放在使用导向的火焰模型中的时域确定,作为预混管中的流动扰动的函数。在简单的几何形状上,在A上的环形燃烧器的环形环上证明了这种方法。然后,该方法延伸到工业型燃气涡轮机燃烧器,并用于预测极限循环幅度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号