首页> 外文会议>International congress on advances in nuclear power plants >Quantitative Phenomena Identification and Ranking Table (QPIRT) for Bayesian Uncertainty Quantification
【24h】

Quantitative Phenomena Identification and Ranking Table (QPIRT) for Bayesian Uncertainty Quantification

机译:贝叶斯不确定性量化的量化现象识别和排序表(QPIRT)

获取原文

摘要

Propagating parameter uncertainty for a nuclear reactor system code is a challenging problem due to often non-linear system response to the numerous parameters involved and lengthy computational times; issues that compound when a statistical sampling procedure is adopted, since the code must be run many times. The number of parameters sampled must therefore be limited to as few as possible that still accurately characterize the uncertainty in the system response. A Quantitative Phenomena Identification and Ranking Table (QPIRT) was developed to accomplish this goal. The QPIRT consists of two steps: a "Top-Down " step focusing on identifying the dominant physical phenomena controlling the system response, and a "Bottom-Up" step which focuses on determining the correlations from those key physical phenomena that significantly contribute to the response uncertainty. The Top-Down step evaluates phenomena using the governing equations of the system code at nominal parameter values, providing a "fast" screening step. The Bottom-Up step then analyzes the correlations and models for the phenomena identified from the Top-Down step to find which parameters to sample. The QPIRT, through the Top-Down and Bottom-Up steps thus provides a systematic approach to determining the limited set of physically relevant parameters that influence the uncertainty of the system response. This strategy was demonstrated through an application to the RELAP5-based analysis of a PWR Total Loss of main Feedwater Flow (TLOFW) accident, also known as feed and bleed' scenario, . Ultimately, this work is the first component in a larger task of building a calibrated uncertainty propagation framework. The QPIRT is an essential piece because the uncertainty of those selected parameters will be calibrated to data from both Separate and Integral Effect Tests (SETs and IETs). Therefore the system response uncertainty will incorporate the knowledge gained from the database of past large IETs.
机译:由于通常非线性系统对涉及的众多参数的响应以及冗长的计算时间,因此传播核反应堆系统代码的参数不确定性是一个具有挑战性的问题。由于必须多次运行该代码,因此在采用统计抽样程序时,该问题会更加复杂。因此,必须将采样参数的数量限制为尽可能少,以便仍能准确表征系统响应中的不确定性。定量现象识别和排名表(QPIRT)的开发是为了实现这一目标。 QPIRT包括两个步骤:“自上而下”步骤专注于确定控制系统响应的主要物理现象;“自下而上”步骤专注于从那些对响应产生重大影响的关键物理现象中确定相关性。反应不确定性。自上而下的步骤使用系统代码的控制方程式在名义参数值下评估现象,从而提供了“快速”筛选步骤。然后,“自下而上”步骤分析从“自上而下”步骤中识别出的现象的相关性和模型,以找出要采样的参数。因此,通过自上而下和自下而上的步骤,QPIRT提供了一种系统的方法来确定影响系统响应不确定性的有限的一组物理相关参数。通过在基于RELAP5的压水堆主要给水流量总损失(TLOFW)事故分析中的应用,也证明了该策略,也称为进水和出水情况。最终,这项工作是构建校准的不确定性传播框架这一较大任务的第一部分。 QPIRT是必不可少的部分,因为这些选定参数的不确定性将根据单独和整体效果测试(SET和IET)中的数据进行校准。因此,系统响应不确定性将吸收从过去大型IET的数据库中获得的知识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号