首页> 外文会议>International conference on ocean, offshore and arctic engineering;OMAE2011 >CHALLENGING THE NEED FOR DUAL GAS PRODUCTION FLOWLINE SYSTEMS USING EMERGING HYDRATE REMEDIATION INTERVENTION TECHNOLOGY
【24h】

CHALLENGING THE NEED FOR DUAL GAS PRODUCTION FLOWLINE SYSTEMS USING EMERGING HYDRATE REMEDIATION INTERVENTION TECHNOLOGY

机译:利用新兴的水合物修复干预技术挑战双采气生产线系统的需求

获取原文

摘要

Gas production flowlines are presenting flow assurance challenges in hydrate management resulting from low ambient seawater temperatures in an increasing number of deepwater developments. During operation the equilibrium hydrate temperature of the produced fluid may be above the minimum seabed temperature, and hence there is a risk of hydrate blockage in the subsea system should the hydrate inhibition system fail.The continuous injection of MEG, with little or no insulation of the subsea system, is a common hydrate mitigation strategy for a gas production system. If insufficient inhibitor is injected there is a risk of hydrates forming and potential blockage of the pipeline in parts of the field.The industry-preferred approach for hydrate blockage remediation is Dual Sided Depressurisation (DSD). The objective is to depressurise the flowline to below hydrate onset conditions, allowing hydrate dissociation and safely disposing of the gas inventory. This is typically performed by one of two methods; installation of a dual flowline system for facility based depressurisation (with CAPEX implications); or a Mobile Offshore Drilling Unit (MODU) can be connected to an appropriate point upstream of the blockage to allow simultaneous depressurisation at the MODU and the facility (with OPEX implications).It is recognised that either method incurs significant costs. Typically the cost and time uncertainties of bringing in aMODU to solve these production stoppages is unattractive. Consequently subsea gas developments have often incurred the increased CAPEX of providing dual flowlines to permit DSD from the facility.An optimisation of the MODU-based intervention method is the subject of this paper. The feasibility of using a "lightweight" intervention vessel (for example an Offshore Support Vessel) in place of the MODU to depressurise the flowline is discussed.This paper discusses hydrate remediation difficulties and case studies; presents emerging hydrate remediation methods and briefly introduces vessel requirements. In discussing this optimisation, this paper also presents an introduction to hydrate remediation theory, some practical challenges, case studies and vessel requirements.The study concluded:1. Significant CAPEX reductions may be achieved by adopting the outlined strategy; namely avoiding dual flowline infrastructure, and ensuring a reduced response time and day rate for any hydrate remediation operations to be performed.2. For this strategy to be adopted cost effectively, pre-engineering, along with suitable contractual arrangements, are required to make the necessary equipment and personnel resources readily available should a hydrate blockage occur. For assets in remotelocations, e.g. Australia, making the resources available is a significant challenge.3. Flowline system access for depressurisation may be achieved by two methods; via the subsea Christmas tree or via suitably located fluid injection/vent access point(s).
机译:在越来越多的深水开发中,由于周围海水温度低,天然气生产流水线在水合物管理方面提出了流量保证挑战。在操作过程中,产出液的平衡水合物温度可能高于最低海床温度,因此,如果水合物抑制系统失效,海底系统中就有水合物堵塞的风险。 连续注入MEG几乎没有或完全没有海底系统的保温层,这是天然气生产系统中常见的水合物缓解策略。如果注入的抑制剂不足,则可能会在部分田地中形成水合物并可能堵塞管道。 水合物堵塞修复的行业首选方法是双面减压(DSD)。目的是将输油管线减压至低于水合物起始条件,从而使水合物解离并安全处置天然气库存。通常,这是通过以下两种方法之一执行的:为基于设施的减压装置安装双流水线系统(涉及资本支出);或可以将移动式海上钻探装置(MODU)连接到堵塞物上游的适当位置,以允许MODU和设施同时降压(这会影响OPEX)。 公认的是,任何一种方法都会产生大量成本。通常情况下,带来成本和时间不确定性 解决这些停产问题的MODU并没有吸引力。因此,海底天然气的开发经常增加提供双流线以允许DSD出入设施的CAPEX。 基于MODU的干预方法的优化是本文的主题。讨论了使用“轻型”介入船(例如,海上支撑船)代替MODU对输油管道降压的可行性。 本文讨论了水合物修复的难点和案例研究。介绍了新兴的水合物修复方法,并简要介绍了容器要求。在讨论这种优化方法时,本文还介绍了水合物修复理论,一些实际挑战,案例研究和容器要求。 该研究得出的结论是: 1.通过采用概述的策略可以显着降低CAPEX;即避免双流水线基础设施,并确保要执行的任何水合物修复操作的响应时间和日处理时间缩短。 2.为使该战略具有成本效益,而需要预先工程设计以及适当的合同安排,以便在发生水合物堵塞时能够随时获得必要的设备和人力资源。对于远程资产 位置,例如澳大利亚,提供资源是一项重大挑战。 3.可以通过两种方法来实现流线系统减压。通过海底圣诞树或通过适当定位的流体注入/通风口进入点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号