首页> 外文会议>North American Thermal Analysis Society conference >Solidification of polymers and metals studied by fast scanning calorimetry
【24h】

Solidification of polymers and metals studied by fast scanning calorimetry

机译:通过快速扫描量热法研究聚合物和金属的固化

获取原文

摘要

The device was developed for investigation of thermal processes during fast thermal treatments of nanosized samples. The idea of the device was taken from differential scanning calorimetry. It consists of high sensitive, low addenda heat capacity thin film sensors used as sample and reference measuring cell. The size of heated area of the sensor is about 60 μm × 80 μm. 6 high sensitive p-n thermopiles are placed inside this area, providing reliable information about sample temperature for thin samples. This allows both controlled fast heating and cooling. Calculation of heat capacity is simplified compared to a single sensor device. Most of the addenda heat capacity and the heat losses are corrected by the differential setup. Electrical control circuit was slightly modified in comparison with PerkinElmer power compensated DSC to simplify the scheme and to reduce noise. It complicates recalculation of compensated power, but up-to date computers make this easy. PID controller on reference side allows to control the average temperature of sample and reference while thermal processes on a millisecond time scale. Power compensation circuit slightly modifies the sample side voltage to bring it to the same temperature as reference. This solution gives directly changes in heat flow from/to the sample during temperature scans. Analog control circuits with internal timebase of 100 MHz (SRS PID and amplifiers) provide confident voltage control even during very fast processes in the sample. The program voltage is generated by a DAQ board (Meilhaus ME4680). All voltages needed for heat capacity determination are measured by this board at the same time. Software for controlling and obtaining data was developed in Lab View environment. The device is intended to work in the range of scanning rates between 0.1 and 500,000 K/s with nanogram samples. The sensor works up to 800 K, until the aluminum details used so far are replaced with something more heat-resistant. Using high temperature sensor allows heating up to 1200 K. It positioned exactly between existing DSC and ultra-fast scanning techniques. Scheme, main principles and working of control circuits will be presented. We show first data on In, Sn and Pb. Measurements of supercooling of Sn samples using DSC, differential power compensated fast scanning technique and ultra-fast scanning is discussed. These measurements cover 10 orders of magnitude in scanning rate.
机译:该设备是为研究纳米尺寸样品的快速热处理过程中的热过程而开发的。该设备的想法来自差示扫描量热法。它由高灵敏度,低附加热容量薄膜传感器组成,用作样品和参比测量池。传感器受热区域的大小约为60μm×80μm。在该区域内放置了6个高灵敏度的PN热电堆,可提供有关薄样品的样品温度的可靠信息。这允许受控的快速加热和冷却。与单个传感器设备相比,简化了热容量的计算。附加装置的大部分热容量和热量损失都通过差动装置进行了校正。与PerkinElmer功率补偿DSC相比,电气控制电路进行了略微修改,以简化方案并降低噪声。它使补偿功率的重新计算复杂化,但是最新的计算机使此操作变得容易。参考侧的PID控制器可以控制样品和参考的平均温度,同时进行毫秒级的热处理。功率补偿电路会稍微修改样品侧电压,使其达到与参考电压相同的温度。该解决方案在温度扫描期间直接给出了进/出样品的热流变化。内部时基为100 MHz的模拟控制电路(SRS PID和放大器)即使在非常快速的样品处理过程中也能提供可靠的电压控制。编程电压由DAQ板(Meilhaus ME4680)生成。热容量确定所需的所有电压均由该板同时测量。在Lab View环境中开发了用于控制和获取数据的软件。该设备旨在以纳克样品在0.1到500,000 K / s的扫描速率范围内工作。传感器的工作温度高达800 K,直到用更耐热的材料替代了迄今为止使用的铝制零件。使用高温传感器可以加热到1200K。它完全位于现有的DSC和超快速扫描技术之间。将介绍控制电路的方案,主要原理和工作原理。我们显示有关In,Sn和Pb的第一批数据。讨论了使用DSC,差分功率补偿快速扫描技术和超快速扫描对Sn样品的过冷度进行测量的方法。这些测量涵盖了10个数量级的扫描速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号