首页> 外文会议>International biohydrometallurgy symposium >Biofilm formation capabilities in the bioleaching microbial consortium: A comparative genomics approach
【24h】

Biofilm formation capabilities in the bioleaching microbial consortium: A comparative genomics approach

机译:生物膜在生物浸交微生物联盟中的形成能力:比较基因组学方法

获取原文

摘要

Bioleaching of copper is driven by moderate complex groups ( consortia) of acidophilic bacteria and archaea, several of which obtain the energy needed for cell growth and metabolism from the oxidation of reduced sulfur compounds and/or iron present in sulfide minerals. Microbial adhesion to rock surfaces via biofilms has been shown to be a prerequisite for the effective mineral dissolution. However, little is known about the biofilm forming capacities of most members of these consortia and how the interactions between microorganisms may affect the formation, structure and dynamics of biofilms as bioleaching proceeds. Using comparative genomics and metabolic reconstruction strategies, we have explored the metabolic potential of 18 bioleaching bacteria to sense and move towards the mineral substrate, using chemotactic responses and to adhere to the mineral surface by expressing cellular structures involved in adhesion. Our findings indicated that all 18 bacteria could potentially participate in biofilm formation at some stage of the bioleaching process. Fourteen of these bacteria encode all structural and regulatory genes necessary for the biosynthesis and assembly of flagella and thus can potentially move towards and colonize minerals. The Gammaproteo bacteria in particular, seem to play a pivotal role during the surface adherence step, since adhesion related gene functions are more abundant in this group (61% ) than in others (22% on average). In contrast, the production of exopolysaccharides ( EPS) , required for the consolidation of the biofilm, is a more wide spread and shared trait amongst the different members of the consortia. All sequenced genomes analyzed, except for the Actinobacteria spp. and Acidithiobacillus caldus have gene clusters encoding a variety of sugar inter-conversion functions and glycosyltransferases as well as the EPS export apparatus.
机译:铜的生物浸出是由嗜酸细菌和古细菌的中等复杂基团(财团),其中一些获得所需的从还原硫化合物和/或存在于硫化矿物铁的氧化细胞生长和代谢的能量驱动。通过生物膜的岩石表面微生物附着已经被证明是有效的矿物溶解的先决条件。然而,知之甚少生物膜形成这些联营集团的多数成员与如何微生物之间的相互作用可能会影响生物膜的形成,结构和动力学作为生物浸出收益的能力。使用比较基因组学和代谢重建策略,我们已经探索的18种生物浸出细菌感和移动朝向矿物基质代谢潜力,使用趋化应答和通过表达参与粘附细胞结构粘附到矿物表面。我们的研究结果表明,所有18种细菌可能在浸出过程中的某些阶段参与生物膜的形成。这些细菌的十四编码所必需的生物合成和的鞭毛组件,因此可以潜在地向和移矿物质移动所有结构和调节基因。所述Gammaproteo细菌特别是似乎发挥在表面附着步骤中起关键作用,因为粘附相关的基因功能是这一组(61%)比在其它(平均22%)中更丰富。相反,生产的胞外多糖(EPS),用于生物膜的整合需要,是一种更广泛的传播和共享性状财团的不同成员之间。所有测序的基因组进行分析,除了放线菌。和嗜酸喜温具有编码多种糖的相互转换的功能和糖基转移酶,以及作为EPS出口装置的基因簇。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号