首页> 外文会议>AIAA aerodynamic decelerator systems technology conference and seminar >Effects of Non-Standard Atmospheric Temperature on Barometric Altitude Measurements and Calculated Aerodynamic Coefficients
【24h】

Effects of Non-Standard Atmospheric Temperature on Barometric Altitude Measurements and Calculated Aerodynamic Coefficients

机译:非标准大气温度对大气高度测量和空气动力学系数计算的影响

获取原文

摘要

In parachute testing, it is common practice to take non-standard air temperatures into account when calculating air density. Less common - and oftentimes ignored - is the effect of non-standard air temperatures on pressure-based altitude measurements. Failing to take the effect of non-standard air temperatures into account will result in errors in altitude measurements with respect to true altitude. While errors in altitude measurements themselves may not be significant, the resulting errors in vertical velocity calculated from altitude and time data may be. Velocity errors also magnify errors in the calculated parachute drag coefficient and may result in misleading predictions about the canopy and performance. Various scenarios where non-standard air temperatures have or have not been taken into account in pressure-based altitude measurements and determination of air density have been investigated, and resulting velocity and drag coefficient errors have been quantified. The greatest error in calculated drag coefficient occurs during the apparently common scenario where air density is corrected for non-standard air temperatures, but pressure-based altitude measurements are not. Somewhat surprisingly, the error resulting from ignoring the effect on non-standard air temperatures entirely (no correction for non-standard temperature in pressure altitude measurements, and basing air density on pressure altitude rather than density altitude) is approximately half the error when accounting for non-standard air temperatures in determining air density, but not correcting pressure-based altitude measurements for non-standard air temperatures. An additional consideration is atmospheric temperatures and temperature lapse rates are usually quite different from those defined for the standard atmosphere, and it can be difficult to obtain accurate air temperature data during testing. So, there can be considerable uncertainty in the air temperatures used to correct pressure altitude measurements and calculate air density. Depending upon test conditions and objectives, availability and accuracy of air temperature data, a case can be made for ignoring air temperature entirely during testing utilizing pressure-based altitude instrumentation, and basing all drag coefficient calculations on a pressure altitude and an air density that corresponds to the standard temperature air density at that pressure altitude.
机译:在降落伞测试中,通常的做法是在计算空气密度时考虑非标准空气温度。非标准的空气温度对基于压力的高度测量的影响较少见,并且经常被忽略。不考虑非标准气温的影响将导致相对于真实高度的高度测量错误。尽管海拔高度测量本身的误差可能不大,但根据海拔高度和时间数据计算出的垂直速度误差可能很大。速度误差还会放大所计算的降落伞阻力系数中的误差,并可能导致有关机盖和性能的误导性预测。在基于压力的高度测量和确定空气密度中已经考虑或未考虑非标准空气温度的各种情况下,已经进行了研究,并对速度和阻力系数误差进行了量化。计算出的阻力系数的最大误差发生在明显常见的场景中,在该场景中,针对非标准空气温度校正了空气密度,但未进行基于压力的高度测量。出乎意料的是,完全忽略了对非标准空气温度的影响(在压力高度测量中未对非标准温度进行校正,而将空气密度基于压力高度而不是密度高度)导致的误差约为误差的一半。非标准空气温度来确定空气密度,但不针对非标准空气温度校正基于压力的高度测量值。另外需要考虑的是大气温度,温度降低率通常与标准大气所定义的速率完全不同,并且在测试过程中可能难以获得准确的空气温度数据。因此,用于校正压力高度测量值和计算空气密度的气温可能存在相当大的不确定性。根据测试条件和目标,空气温度数据的可用性和准确性,可以采用基于压力的高度仪表来完全忽略测试过程中的空气温度,并将所有阻力系数计算基于压力高度和对应的空气密度达到该压力高度下的标准温度空气密度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号