首页> 外文会议>International conference on fuel cell science, engineering, and technology;FuelCell2010 >Transient Performance of Integrated SOFC System Including Spatial Temperature Control
【24h】

Transient Performance of Integrated SOFC System Including Spatial Temperature Control

机译:包括空间温度控制在内的集成式SOFC系统的瞬态性能

获取原文

摘要

Spatial temperature feedback control has been developed for a simulated integrated non-pressurized simple cycle solid oxide fuel cell (SOFC) system. The fuel cell spatial temperature feedback controller is based on (1) feed-forward set-points that minimize temperature variation in the fuel cell electrode- electrolyte solid temperature profile for the system operating power range, and (2) decentralized proportional-integral based feedback to maintain the fuel cell spatial temperature profile during transients and disturbances. Simulation results indicate the fuel cell spatial temperature variation can be maintained within 15 degrees of nominal to significant load perturbations.Temperature gradients through the fuel cell are needed to remove the heat generated within the cell and cannot be avoided. The goal of the developed spatial temperature control is to minimize temperature variations from a nominal temperature profile in time. Minimal temperature variations in the SOFC electrode-electrolyte solid assembly will result in decreased thermal stresses and thereby decreased degradation and probability-of-failure. Simulation results demonstrating the ability to maintain the SOFC spatial temperature during large load perturbations indicates SOFC could be designed and controlled for rapid load following capability. Such performance can greatly improve SOFC system operating flexibility and thereby open new markets for SOFC systems including load following or spinning reserve services for the utility grid.
机译:空间温度反馈控制已开发用于模拟集成非加压简单循环固体氧化物燃料电池(SOFC)系统。燃料电池空间温度反馈控制器基于(1)前馈设定点,该前馈设定点使系统工作功率范围内的燃料电池电极-电解质固体温度曲线中的温度变化最小,以及(2)基于分散比例积分的反馈在瞬变和扰动期间保持燃料电池的空间温度分布。仿真结果表明,燃料电池的空间温度变化可以保持在标称值至重大负载扰动的15度范围内。 需要通过燃料电池的温度梯度来消除燃料电池内产生的热量,这是无法避免的。所开发的空间温度控制的目标是在时间上最小化标称温度曲线的温度变化。 SOFC电极-电解质固体组件中的最小温度变化将导致减少的热应力,从而减少降解和故障的可能性。仿真结果证明了在大负载扰动期间保持SOFC空间温度的能力表明,可以设计和控制SOFC以实现快速的负载跟随能力。这样的性能可以极大地提高SOFC系统的操作灵活性,从而为SOFC系统打开新的市场,包括为公用电网提供负荷跟踪或旋转备用服务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号