首页> 外文会议>Joint international conference on multibody system dynamics >Higher Order Integration of Non-Smooth Dynamical Systems Using Parallel Computed Extrapolation Methods Based on Time-Stepping Schemes
【24h】

Higher Order Integration of Non-Smooth Dynamical Systems Using Parallel Computed Extrapolation Methods Based on Time-Stepping Schemes

机译:基于时间步进方案的并行计算外推方法对非光滑动力系统的高阶积分

获取原文

摘要

Topic of this paper are integration methods for non-smooth multi-body systems (MBS). Non-smooth MBS are characterized by unilateral contacts, friction and frictional impacts leading to discrete jumps within the system's velocities e.g. due to closing rigid contacts. Therefore special numerical methods like time-stepping schemes are needed to integrate such systems. They are based on a constant time discretization of the system dynamics including the contact conditions. As a consequence jumps within the system velocities are allowed e.g. during impacts. ODE theories like error estimation and step size control are only applicable for the smooth part of the solution. In this paper step size selection and extrapolation methods are used to improve these integration schemes. Based on a step size control according to ODE theory for the smooth part some heuristic adjustments are made for the non-smooth part. For a better performance the time-stepping scheme is used as a base integration scheme for Richardson Extrapolation in order to increase the integration order from first to second or higher order during the smooth part. Examples with academic and industrial background like valve-train simulation are presented to show robustness and efficiency of the overall algorithm. As extrapolation methods themselves contain algorithmic parallelism they are ideal for the application of parallel computing techniques. All sub-step series can be calculated simultaneously by parallel computer architectures e.g. multicore CPUs to speed up numerical integration and to save computational time.
机译:本文的主题是非光滑多体系统(MBS)的集成方法。不光滑的MBS的特征是单边接触,摩擦和摩擦冲击,导致系统速度(例如速度)内的离散跳跃。由于闭合刚性触点。因此,需要特殊的数值方法(如时间步进方案)来集成此类系统。它们基于系统动力学(包括接触条件)的恒定时间离散化。结果,允许系统速度内的跳跃,例如。在撞击中。 ODE理论(例如误差估计和步长控制)仅适用于解决方案的平滑部分。在本文中,步长选择和外推方法用于改进这些集成方案。基于根据ODE理论对平滑部分进行的步长控制,对非平滑部分进行了启发式调整。为了获得更好的性能,时间步长方案用作Richardson外推法的基本积分方案,以便在平滑部分将积分阶次从一阶提高到二阶或更高阶。提出了具有学术和工业背景的示例,例如气门机构仿真,以显示整个算法的鲁棒性和效率。由于外推方法本身包含算法并行性,因此非常适合并行计算技术的应用。所有子步骤系列都可以通过并行计算机体系结构(例如并行计算)同时计算。多核CPU,以加速数值集成并节省计算时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号