首页> 外文会议>Joint international conference on multibody system dynamics >Acoustic Fluid Structure Interaction with Smoothed Particle Hydrodynamics Leveraging Parallel Computing on GPUs
【24h】

Acoustic Fluid Structure Interaction with Smoothed Particle Hydrodynamics Leveraging Parallel Computing on GPUs

机译:利用GPU上的并行计算实现声流体结构与平滑粒子流体动力学的相互作用

获取原文

摘要

The numerical simulation of physical phenomena is gaining popularity in all fields of engineering as computing capabilities grow rapidly. Replacing costly experiments, cheap and fast numerical simulations can be used to augment multibody dynamic models with flexible bodies as well as fluid structure interaction. Despite tremendous improvements on existing acoustic simulation methods, fluid structure interaction between multibody systems and surrounding gases or liquids is still particularly challenging to model. In this paper, the potential and limits of a meshless Lagrangian technique, called Smoothed Particle Hydrodynamics (SPH) are investigated with focus on acoustic fluid structure interaction. Similar to formulations for free surface flow, the SPH approximation is applied on the compressible Navier-Stokes equations. Combined with constitutive equations, the SPH approach is used to model both bulk flow and pressure wave propagation at the same time. The problem is resolved in its full nonlinear complexity since linearizations are avoided. Computational experiments, carried out for the verification of the new approach indicate that SPH models sound propagation accurately. Furthermore, sound excitation due moving boundaries shows good agreement with analytic solutions. However, this study also indicates that current approaches for the modeling of boundaries, such as rigid walls, are deficient and need to be improved in order make SPH applicable for the simulation of acoustic fluid structure interaction. Nonetheless, SPH is well suited to model liquid fluid structure interaction. Demonstrating potential applications, the motion of rigid bodies is simulated under forces resulting from liquid flow. The numerical experiments presented, draw on a fast, massively parallel GPU implementation of the SPH algorithm which is also discussed briefly.
机译:随着计算能力的快速增长,物理现象的数值模拟在工程的所有领域都越来越流行。代替昂贵的实验,可以使用便宜且快速的数值模拟来增强具有柔性体以及流体结构相互作用的多体动力学模型。尽管对现有的声学模拟方法进行了巨大的改进,但是多体系统与周围气体或液体之间的流体结构相互作用仍然特别难以建模。在本文中,研究了无网格拉格朗日技术(称为平滑粒子流体动力学(SPH))的潜力和局限性,重点是声学流体结构相互作用。与自由表面流动的公式类似,将SPH近似应用于可压缩的Navier-Stokes方程。结合本构方程,SPH方法可用于同时模拟体流量和压力波传播。由于避免了线性化,因此解决了该问题的全部非线性复杂性。为验证新方法而进行的计算实验表明,SPH可以准确地模拟声音传播。此外,由于运动边界引起的声激励与解析解显示出良好的一致性。但是,这项研究还表明,当前的边界建模方法(如刚性墙)是不足的,需要进行改进,以使SPH适用于声流体结构相互作用的模拟。尽管如此,SPH非常适合于模拟液体-流体结构的相互作用。为了说明潜在的应用,在液体流动产生的力作用下模拟了刚体的运动。提出的数值实验借鉴了SPH算法的快速,大规模并行GPU实现,该算法也进行了简要讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号