首页> 外文会议>European Conference on Fracture >Modeling and simulation of temperature-dependent cyclic plastic deformation of austenitic stainless steels at the VHCF limit
【24h】

Modeling and simulation of temperature-dependent cyclic plastic deformation of austenitic stainless steels at the VHCF limit

机译:VHCF极限奥氏体不锈钢温度依赖性环状变形的建模与仿真

获取原文
获取外文期刊封面目录资料

摘要

The exploration of fatigue mechanisms in the VHCF regime is gaining importance since many components have to withstand a very high number of loading cycles due to high frequency or long product life. In this regime, the period of fatigue crack initiation and thus the localization of plastic deformation play an important role. The material that was investigated in this study is the metastable austenitic stainless steel AISI 304 in the initially purely austenitic condition. The experimental investigations during quasi-isothermal fatigue tests revealed that a moderate increase of temperature from room temperature up to 150°C led to a reduced VHCF strength. At both temperatures the 304 grade still undergoes a pronounced localization of plastic deformation in shear bands accompanied by a deformation-induced martensitic phase transformation from the γ-austenite to the α'-martensite during VHCF loading. In the present study, the experimental study is extended by modeling and simulation of the relevant temperature-dependent VHCF deformation mechanisms in order to provide a more profound understanding of the observed cyclic deformation. For this purpose, two-dimensional (2-D) morphologies of microstructures are modeled in the mesoscopic scale by the use of the boundary element method (BEM), and cyclic plastic deformation is considered by certain mechanisms defined in a simulation model. It describes the localization of plastic deformation in shear bands taking into account the formation, plastic sliding deformation and cyclic slip irreversibility of each shear band. The deformation-induced martensitic phase transformation is represented by introducing martensitic nuclei into the modeled microstructure depending on the plastic deformation in shear bands. The influence of temperature is incorporated into the simulation model by the use of empirical data and a kinetic model, each related to the tensile test. The simulated cyclic deformation and phase transformation is compared to experimental observations and allows for assessing the individual influence of deformation mechanisms on the temperature-dependent fatigue behavior. Finally, a temperature-independent 'limit curve' for the accumulated irreversible plastic sliding deformation regarding failure in the VHCF regime is proposed.
机译:VHCF制度中疲劳机制的探索是重要的,因为由于许多组件由于高频或长产品寿命,许多部件必须承受非常大的装载周期。在这一制度中,疲劳裂纹引发的时期,因此塑性变形的定位起着重要作用。本研究中研究的材料是最初纯粹奥氏体条件的亚稳奥氏体不锈钢AISI 304。在准等温疲劳试验期间的实验研究表明,从室温的温度增加到150℃的温度增加导致降低的VHCF强度。在两个温度下,304级仍然经历剪切带中的塑性变形的明显定位,伴随于在VHCF负载期间从γ-奥氏体到α'-马氏体的变形诱导的马氏体相变。在本研究中,通过对相关温度依赖性VHCF变形机制的建模和模拟来延长实验研究,以便为观察到的循环变形提供更深刻的理解。为此目的,通过使用边界元法(BEM)在介镜尺度中模拟微结构的二维(2-D)形貌,并且通过在仿真模型中定义的某些机制考虑循环塑性变形。它描述了每个剪切带的形成,塑料滑动变形和循环滑动不可逆性剪切带中的塑性变形定位。通过将马氏体核引入模拟的微观结构来表示变形诱导的马氏体相变,这取决于剪切带中的塑性变形。通过使用经验数据和动力学模型将温度的影响结合到模拟模型中,每个都与拉伸试验相关。将模拟的循环变形和相变与实验观察结果进行比较,并允许评估变形机制对温度依赖性疲劳行为的单独影响。最后,提出了一个关于VHCF制度故障的累积不可逆塑料滑动变形的温度无关的“极限曲线”。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号