首页> 外文会议>North American Thermal Analysis Society conference >Estimation of Time to Maximum Rate under Adiabatic Conditions (TMRad) Using Kinetic Parameters Derived from DSC - Investigation of Thermal Behavior of 3-methyl-4-nitrophenol
【24h】

Estimation of Time to Maximum Rate under Adiabatic Conditions (TMRad) Using Kinetic Parameters Derived from DSC - Investigation of Thermal Behavior of 3-methyl-4-nitrophenol

机译:利用DSC衍生的动力学参数估算绝热条件下达到最大反应速率所需的时间-3-甲基4-硝基苯酚热行为研究

获取原文

摘要

Kinetic parameters of the decomposition of hazardous chemicals can be applied for theestimation of their thermal behavior under any temperature profile. Presented paper describes theapplication of the advanced kinetic approach for the determination of the thermal behavior also underadiabatic conditions occurring e.g. in batch reactors in case of cooling failure.The kinetics of the decomposition of different samples (different manufacturers and batches) of 3-methyl-4-nitrophenol were investigated by conventional DSC in non-isothermal (few heating ratesvarying from 0.25 to 8.0 K/min) and isothermal (range of 200-260°C) modes. The kinetic parametersobtained with AKTS-Thermokinetics Software were applied for calculating reaction rate and progressunder different heating rates and temperatures and verified by comparing simulated and experimentalsignals. After application of the heat balance to compare the amount of heat generated during reactionand its removal from the system, the knowledge of reaction rate at any temperature profiles allowed thedetermination of the temperature increase due to the self-heating in adiabatic and pseudo-adiabaticconditions.Applied advanced kinetic approach allowed simulation the course of the Heat-Wait-Search (HWS) modeof operation of adiabatic calorimeters. The thermal safety diagram depicting dependence of Time toMaximum Rate (TMR) on the initial temperature was calculated and compared with the results of HWSexperiments carried out in the system with F-factor amounting to 3.2. The influence of the F-factor andreaction progress reached at the end of the HWS monitoring on the TMR is discussed. Presentedcalculations clearly indicate that even very minor reaction progress reduces the TMRad of 24 hrscharacteristic for a sample with initial reaction progress amounting to zero.Described estimation method can be verified by just one HWS-ARC, or by one correctly chosen ISOARCrun of reasonable duration by knowing in advance the dependence of the TMR on the initialtemperature for any F-factor. Proposed procedure results in significant shortening of the measuring timecompared to a safety hazard approach based on series of ARC experiments carried out at the beginningof a process safety evaluation.
机译:危险化学品分解的动力学参数可用于 在任何温度曲线下估算其热行为。论文介绍了 先进的动力学方法在热行为测定中的应用 发生绝热条件,例如在分批反应堆中,以防冷却失败。 3-的不同样品(不同制造商和批次)的分解动力学 通过常规DSC在非等温(少量加热速率)下研究了4-硝基硝基苯酚 从0.25至8.0 K / min的温度变化)和等温(200-260°C范围)模式。动力学参数 使用AKTS-Thermokinetics软件获得的反应速率和进度进行计算 在不同的加热速率和温度下,并通过比较模拟和实验进行验证 信号。应用热量平衡后,比较反应过程中产生的热量 并将其从系统中移除,在任何温度曲线下的反应速率知识都可以使 绝热和拟绝热中由于自热引起的温度升高的确定 情况。 应用先进的动力学方法可以模拟热等待搜索(HWS)模式的过程 绝热热量计的操作。热安全图描述了时间与 计算初始温度下的最大速率(TMR)并将其与HWS的结果进行比较 系统中F因子总计为3.2的实验。 F因子和 讨论了HWS对TMR监控结束时达到的反应进度。提出了 计算清楚地表明,即使很小的反应进程也会降低24小时的TMRad 初始反应进程为零的样品的特征曲线。 可以通过一种HWS-ARC或一种正确选择的ISOARC来验证所描述的估算方法 通过提前了解TMR对初始值的依赖来进行合理持续时间的运行 任何F因子的温度。拟议的程序大大缩短了测量时间 与基于开始时进行的一系列ARC实验的安全隐患方法相比 过程安全性评估的内容。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号