首页> 外文会议>ASME turbo expo >THERMOACOUSTIC MODELING AND TRANSFER FUNCTIONS DETERMINATION FOR A MATRIX BURNER USING UNSTEADY CFD
【24h】

THERMOACOUSTIC MODELING AND TRANSFER FUNCTIONS DETERMINATION FOR A MATRIX BURNER USING UNSTEADY CFD

机译:非稳态CFD确定矩阵燃烧器的热声模型和传递函数

获取原文

摘要

Turbulent combustion of a lean premixed methane-air mixture is simulated numerically using unsteady CFD. The configuration is a matrix burner suitable for stationary gas turbine applications. The geometry consists of the following: seven slots which constitute the flame holder for stabilizing the flame, a diffuser which serves the purpose of lowering the pressure loss across the burner and a combustion chamber. A contraction ensures that a recirculation zone is created close to the exit of the flame holder for anchoring and stabilizing the flame. Fuel is injected in 112 holes, 8 along each end of the 7 slots. The injected fuel meets the in-coming high velocity air stream for mixing to begin in the premixed ducts before finally entering the combustion chamber. This paper validates the cold flow velocity field and the steady flame results from CFD with measurements and investigates combustion instability in a matrix burner, the onset of which can be attributed to changes in flow variables using URANS. Particularly, the effect of the mixture strength variation caused by fluctuations in the velocity field on the unsteady heat rate inside the combustor is investigated. The fuel inlet is assumed to be choked due to the high pressure drop across it. The time lag between the time fuel is injected and the time it reaches the flame front is estimated. Quantifying this time delay (or "flight time") helps to characterize the burner with respect to thermo-acoustic instabilities. The flame frequency response to a white noise forcing at the air inlet is determined. This is followed by the determination of the acoustic transfer matrix linking the pressure and velocity downstream and upstream of the burner/flame. This is done by using system identification that is common in control theory. The determined flame frequency response and the time lag are used in a ID acoustic network code for determining the longitudinal eigenmodes of the combustor of the matrix burner.
机译:稀薄的预混甲烷-空气混合物的湍流燃烧是使用非稳态CFD数值模拟的。该配置是适用于固定式燃气轮机应用的矩阵燃烧器。几何形状由以下部分组成:七个槽,它们构成用于稳定火焰的火焰保持器;扩散器,其作用是降低整个燃烧器和燃烧室的压力损失。收缩确保了在火焰固定器出口附近形成一个回流区域,以固定和稳定火焰。燃料被喷入112个孔中,沿着7个槽的两端分别插入8个孔。所喷射的燃料与流入的高速空气流相遇,以进行混合,并在最终进入燃烧室之前在预混合管道中开始混合。本文通过测量验证了CFD的冷流速场和稳定火焰结果,并研究了矩阵燃烧器的燃烧不稳定性,该燃烧器的出现可归因于使用URANS的流量变量的变化。特别地,研究了由速度场的波动引起的混合强度变化对燃烧器内部不稳定热率的影响。燃料入口由于其上的高压降而被认为阻塞。估计了从喷射燃料到到达火焰前沿的时间之间的时间间隔。量化此时间延迟(或“飞行时间”)有助于表征燃烧器的热声不稳定性。确定了在进气口处对白噪声施加的火焰频率响应。接下来是确定将燃烧器/火焰下游和上游的压力和速度联系起来的声传递矩阵。这是通过使用控制理论中常见的系统识别来完成的。所确定的火焰频率响应和时滞在ID声学网络代码中用于确定矩阵燃烧器燃烧器的纵向本征模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号