首页> 外文会议>Conference on Photomask Technology; 20070918-21; Monterey,CA(US) >Layout verification in the era of process uncertainty: Requirements for Speed, Accuracy, and Process Portability
【24h】

Layout verification in the era of process uncertainty: Requirements for Speed, Accuracy, and Process Portability

机译:工艺不确定性时代的布局验证:对速度,准确性和工艺可移植性的要求

获取原文
获取外文期刊封面目录资料

摘要

A few years ago, model-based layout verification was used primarily with mask data preparation as a safety net to predict and avoid limited printability performance prior to mask fabrication. If certain layout locations would transfer poorly onto the wafer, the mask data was intercepted, preventing yield loss associated with "mask issues." Such mask-related issues come primarily from three sources: Mask manufacture bias, OPC limitations and intrinsic layout configurations. While mask manufacture bias and OPC limitations can be addressed during the final stages of mask synthesis and manufacture, layout configurations that exhibit poor lithographic performance for a given process cannot be modified without considering the electrical effect such new topologies will induce in the modified layout. In principle, marginally performing layouts can be removed from the design by adequately interpreting geometric design rules. Unfortunately, while such rules are strictly defined for 1D, they are not as well-defined for arbitrary 2D configurations. For that reason, several approaches to transferring sufficient process information to the layout synthesis tools to prevent the presence of layout configurations incompatible with the production process have been attempted. However, when the production process is not fully developed, using these approaches can potentially limit the portability of the layout. In this paper, we describe and evaluate different approaches to defining reasonable layout verification targets by exploring various methods to reduce verification time, maintain accuracy and improve layout portability. First, to reduce verification time, we implement a method to quickly scan the layout for large variations without the need to run the actual OPC recipe. This paper describes the characteristics of a model that defines a pseudo-OPC process. Next, because the pseudo-OPC process cannot be mapped exactly to the real OPC process, there are accuracy limitations when using only the pseudo-OPC process. To overcome these limitations, the verification system follows an incremental approach, in which those regions previously selected are evaluated with the full mask synthesis recipe to reduce the number of falsely detected errors. Finally, to investigate the issue of portability, we evaluate how different errors evolve with maturing process and OPC recipe conditions for different layout patterns.
机译:几年前,基于模型的布局验证主要与掩膜数据准备一起用作安全网,以预测并避免在掩膜制造之前出现可印刷性受限的情况。如果某些布局位置不能很好地转移到晶圆上,则会截取掩膜数据,从而防止与“掩膜问题”相关的良率损失。此类与掩模相关的问题主要来自三个方面:掩模制造偏差,OPC限制和固有的布局配置。尽管可以在掩模合成和制造的最后阶段解决掩模制造偏差和OPC限制,但是如果不考虑这种新拓扑将在修改后的布局中产生的电效应,则无法修改在给定工艺中表现出较差的光刻性能的布局配置。原则上,通过充分解释几何设计规则,可以从设计中删除边缘执行的布局。不幸的是,尽管这些规则是严格针对1D定义的,但对于任意2D配置却没有明确定义。因此,已经尝试了几种将足够的处理信息传送到布局合成工具以防止出现与生产过程不兼容的布局配置的方法。但是,当生产过程尚未完全开发时,使用这些方法可能会限制布局的可移植性。在本文中,我们通过探索减少验证时间,保持准确性和提高布局可移植性的各种方法,来描述和评估定义合理的布局验证目标的不同方法。首先,为了减少验证时间,我们实现了一种方法,可以快速扫描布局中的较大差异,而无需运行实际的OPC配方。本文介绍了定义伪OPC流程的模型的特征。接下来,由于无法将伪OPC过程准确地映射到实际OPC过程,因此仅使用伪OPC过程时会存在精度限制。为了克服这些限制,验证系统采用一种增量方法,其中使用完整的掩码合成配方对先前选择的那些区域进行评估,以减少错误检测到的错误的数量。最后,为了研究可移植性问题,我们评估了针对不同布局模式,随着成熟过程和OPC配方条件的不同,错误会如何演变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号