首页> 外文会议>Biotechnology for Fuels and Chemicals >Mitigation of Cellulose Recalcitrance to Enzymatic Hydrolysis by Ionic Liquid Pretreatment
【24h】

Mitigation of Cellulose Recalcitrance to Enzymatic Hydrolysis by Ionic Liquid Pretreatment

机译:离子液体预处理可减轻纤维素对酶水解的抵抗性

获取原文

摘要

Efficient hydrolysis of cellulose-to-glucose is critically important in producing fuels and chemicals from renewable feedstocks. Cellulose hydrolysis in aqueous media suffers from slow reaction rates because cellulose is a water-insoluble crystalline biopolymer. The high-crystallinity of cellulose fibrils renders the internal surface of cellulose inaccessible to the hydrolyzing enzymes (cellulases) as well as water. Pretreatment methods, which increase the surface area accessible to water and cellulases are vital to improving the hydrolysis kinetics and conversion of cellulose to glucose. In a novel technique, the microcrystalline cellulose was first subjected to an ionic liquid (IL) treatment and then recovered as essentially amorphous or as a mixture of amorphous and partially crystalline cellulose by rapidly quenching the solution with an antisolvent. Because of their extremely low-volatility ILs are expected to have minimal environmental impact. Two different ILs, 1-n-butyl-3-methylimidazolium chloride (BMIMC1) and l-allyl-3-methylimidazolium chloride (AMIMC1) were investigated. Hydrolysis kinetics of the IL-treated cellulose is significantly enhanced. With appropriate selection of IL treatment conditions and enzymes, the initial hydrolysis rates for IL-treated cellulose were up to 90 times greater than those of untreated cellulose. We infer that this drastic improvement in the "overall hydrolysis rates" with IL-treated cellulose is mainly because of a significant enhancement in the kinetics of the "primary hydrolysis step" (conversion of solid cellulose to soluble oligomers), which is the rate-limiting step for untreated cellulose. Thus, with IL-treated cellulose, primary hydrolysis rates increase and become comparable with the rates of inherently faster "secondary hydrolysis" (conversion of soluble oligomers to glucose).
机译:从可再生原料生产燃料和化学品时,纤维素到葡萄糖的有效水解至关重要。由于纤维素是水不溶性结晶生物聚合物,因此在水介质中的纤维素水解反应速度较慢。纤维素原纤维的高结晶度使水解酶(纤维素酶)以及水无法接触到纤维素的内表面。增加水和纤维素酶可及表面积的预处理方法对于改善水解动力学和纤维素向葡萄糖的转化至关重要。在一种新技术中,首先对微晶纤维素进行离子液体(IL)处理,然后通过用抗溶剂将溶液快速淬灭,将其回收为基本上无定形的或无定形和部分结晶的纤维素的混合物。由于IL的挥发性极低,因此它们对环境的影响最小。研究了两种不同的IL,1-正丁基-3-甲基咪唑氯化物(BMIMC1)和1-烯丙基-3-甲基咪唑氯化物(AMIMC1)。经IL处理的纤维素的水解动力学显着增强。随着IL处理条件和酶适当选择,对于IL-处理的纤维素初始水解率分别高达90大于那些未处理的纤维素的倍。我们推断,用IL处理的纤维素在“总水解速率”方面的大幅改善主要是由于“主要水解步骤”(将固体纤维素转化为可溶性低聚物)动力学的显着提高所致。未处理纤维素的限制步骤。因此,用IL处理的纤维素,一级水解速率增加并且变得与固有的更快的“二级水解”速率(可溶的低聚物转化为葡萄糖)相当。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号