首页> 外文会议>International Conference on Waste Management and Technology >Treatment and characterization analysis of electrolytic manganese anode slime
【24h】

Treatment and characterization analysis of electrolytic manganese anode slime

机译:电解锰阳极粘液的处理与表征分析

获取原文

摘要

This research aims at providing the basic database for reasonable treatment of electrolytic manganese anode slime by comparing its composition, phase and crystal structure before and after the specific treatment. To describe original samples' surface physical and chemical characteristics, X-ray fluorescence (XRF), Flame Atomic Absorption Spectrometry (FAAS), X-ray diffraction (XRD), Scanning Electron Microscope and Energy Dispersive Spectrometer (SEM-EDS) and TG-DTA were used. Then, used XRD and SEM-EDS to describe the system features and characterization of the anode slime performed by Washing-Roasting. Through application of XRF and FAAS, element content in anode slime and the source of each element were analyzed. The results show that the original samples of anode slime mainly contains Mn, Pb, Ca, Se and Sr and averagely the contents of manganese and lead are 47% and 7.46%, respectively. XRD analysis shows that main phases of the anode slime are KxMn8O_(16),MnO2,PbMn8O_(16) and Pb2Mn8O_(16), and MnO2 in the slime has a mixed crystal structure of α-MnO2,β-MnO2,γ-MnO2,δ-MnO2. SEM-EDS analysis indicates that the anode slime has dense "mineral" phase. TG-DTA/DTG analysis shows that at the temperature of 0 ~ 573 °C, water in δ -MnO2 lattice is desorbed; 573 ~ 655 °C, MnO2 starts to lose oxygen and turn into Mn2O3; 900 ~ 1000 °C Mn2O3 loses oxygen and turn into Mn3O4. Anode slime under different roasting temperature were characterized by XRD and SEM-EDS. The result shows that when roasting temperature reaches higher than 700 °C, bond energy of Pb-O is broken; when higher than 800 °C, the crystallinity of anode slime further increases and the dense structure of anode slime is broken, which provides an effective way to remove lead from the slime; when higher than 900 °C, Mn2O3 turns into Mn3O4 and the channels in the anode slime become much looser and wider for better leaching of impurity ions.
机译:本研究旨在提供基本数据库,以合理处理电解锰阳极粘液,通过比较特定治疗前后的组合物,相和晶体结构。要描述原始样品的表面物理和化学特性,X射线荧光(XRF),火焰原子吸收光谱法(FAAS),X射线衍射(XRD),扫描电子显微镜和能量分散光谱仪(SEM-EDS)和TG-使用DTA。然后,使用XRD和SEM EDS来描述通过洗涤焙烧而执行的阳极粘液的系统特征和表征。通过应用XRF和FAAS,分析了阳极粘液中的元素内容和每个元素的源。结果表明,阳极粘液的原始样品主要含有Mn,Pb,Ca,Se和Sr,平均锰和铅的含量分别为47%和7.46%。 XRD分析表明,阳极粘液的主要相是KXMN8O_(16),MNO2,PBMN8O_(16)和PB2MN8O_(16),并且粘液中的MNO2具有α-MNO2,β-MNO2,γ-MNO2的混合晶体结构,δ-mnO2。 SEM-EDS分析表明阳极粘液具有致密的“矿物质”相位。 TG-DTA / DTG分析表明,在0〜573℃的温度下,δ-mNO2晶格中的水被解吸; 573〜655°C,MnO2开始失去氧气,变成Mn2O3; 900〜1000°C Mn2O3损失氧气,变成Mn3O4。通过XRD和SEM EDS在不同焙烧温度下的阳极粘液。结果表明,当焙烧温度达到高于700℃时,PB-O的粘合能量被破坏;当高于800°C时,阳极粘液的结晶度进一步增加,阳极粘液的致密结构被破坏,这提供了从粘液中去除引线的有效方法;当高于900°C时,Mn2O3变成Mn3O4,并且阳极粘液中的通道变得更加宽松,以便更好地浸出杂质离子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号