首页> 外文会议>International Conference on Greenhouse Gas Control Technologies >Influence of Rock Wettability on CO2 Migration and Storage Capacity in Deep Saline Aquifers
【24h】

Influence of Rock Wettability on CO2 Migration and Storage Capacity in Deep Saline Aquifers

机译:岩石润湿性对深盐含水层CO2迁移和储存能力的影响

获取原文

摘要

CO2 geo-storage (CGS) is a key element of anthropogenic greenhouse gas management. Technically, in CGS, CO2 is captured from large point-source emitters and injected deep underground into geological formations. In this context, it is important to accurately predict the CO2 storage capacity of the target formation, as well as the associated migration of the CO2 plume versus time. This estimation heavily relies on reservoir scale simulations, which require mesoscale physical input parameters. One parameter, which critically affects these mesoscale input variables is the CO2-wettability of the rock;; however, CO2-wettability has received little attention despite its importance;; specifically, CO2-wettability influences residual fluid saturations, capillary pressures, CO2 cluster morphologies, CO2-brine interfacial areas, and relative permeabilities. The objective of this study is thus to investigate, using high performance simulations, the impact of wettability on CO2 storage capacity andon CO2 migration patterns for various types of reservoirs. We therefore performed 3D reservoir-scale CO2 injection simulations into a typical storage reservoir at 1200 m depth using the multiphase, multicomponent, non-isothermal numerical simulator TOUGH2 combined with the fluid properties module ECO2M for the system CO2-NaCl-H20. The homogeneous model consisted of 87500 cells and had a porosity of 0.15, a horizontal permeability of 1000 mD, anda vertical to horizontal permeability ratio of 0.1. CO2 was injectedfor one year at a rate of 0.1 Mt/yrs and the CO2 plume behaviour was simulated for the next 10 years. Five different wettability scenarios were evaluated, namely strongly water-wet, weakly water-wet, intermediate-wet, weakly CO2-wet and strongly CXh-wet conditions. We demonstrate that wettability has ahighly significant impact on the evolution of the CO2 plume, both in time and in space. Importantly, the results show that the CO2 plume reached the top of the model surface (-800 m) after only 3 years (after the end of injection) in the case of the strongly CO2-wet reservoir, but after 10 years in case of the weakly CO2-wet reservoir. The CO2 was better retainedin the less CO2-wet rock: a depth of-869 m in the case of the intermediate-wet reservoir,-913 m in the case of the weakly water-wet reservoir and-990 m in the case of the strongly water-wet reservoir was reachedafter 10 years. At all times, CO2 migrated furthest in the strongly CO2-wet reservoir, andwas most contained in the strongly water-wet reservoir. Furthermore, the shape of the CO2 plume is significantly affected by the rock wettability: the plume has a rain-drop like appearance in case of the strongly water-wet reservoir, but looks candle-like in the CO2-wet case.
机译:CO2地理储存(CGS)是人为温室气体管理的关键因素。从技术上讲,在CGS中,CO2由大点源发射器捕获并将地下深入地地质形成。在这种情况下,重要的是准确地预测目标形成的CO2存储容量,以及CO2羽流与时间的相关迁移。该估计很大依赖于储层尺度模拟,这需要Mescale物理输入参数。一个参数,其批判性地影响这些Mescle输入变量是岩石的二氧化碳润湿性;但是,尽管重要的是,二氧化碳 - 润湿性很少受到关注;具体地,CO2湿度影响残留的流体饱和,毛细管压力,CO2簇形态,CO2-盐水界面和相对渗透率。因此,本研究的目的是使用高性能模拟,润湿性对各种类型的储层的CO2储存能力的影响。因此,我们使用多相,多组分,非等温数值模拟器韧带将3D储存率CO2注射模拟与1200米的典型存储储存器一起进行到典型的存储储存器中,使用多相,多组分,非等温数值模拟器韧带2与系统CO2-NaCl-H20的流体性质模块ECO2M联合。均匀模型由87500个细胞组成,孔隙率为0.15,水平渗透率为1000md,垂直于水平渗透率为0.1。二氧化碳一年以0.1毫升/年的速度注射,并在未来10年内模拟CO 2羽流行为。评估了五种不同的润湿性情景,即强烈水湿,弱水湿,中间湿润,弱CO2湿润,潮湿的条件强。我们证明润湿性对两次和空间的CO2羽流的演变产生了极大的影响。重要的是,结果表明,在强有力的CO2-湿储层的情况下,仅3年(注射结束后)达到模型表面(-800米)的顶部,但在10年后弱二氧化碳储层。 CO 2更好地保留了较少的CO2湿岩:在中间湿储存器的情况下,在中间湿储存器的情况下,在弱水湿储存器的情况下为-913米-990 m强烈的水湿储层10年来达到。始终,二氧化碳迁移在强湿储存器中最强大的Co2湿储层中最远,最含水湿润储层。此外,CO2羽流的形状受岩石润湿性的显着影响:在强水储存器的情况下,羽流具有雨滴如外观,但在CO2湿式盒中看起来像蜡烛状。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号