...
首页> 外文期刊>Oil & gas science and technology >Coupled Large Scale Hydromechanical Modelling for Caprock Failure Risk Assessment of CO2 Storage in Deep Saline Aquifers
【24h】

Coupled Large Scale Hydromechanical Modelling for Caprock Failure Risk Assessment of CO2 Storage in Deep Saline Aquifers

机译:耦合大规模流体力学建模,用于深盐含水层CO2储存的CAPROCK失效风险评估

获取原文
           

摘要

This work presents a numerical strategy of large scale hydromechanical simulations to assess the risk of damage in caprock formations during a CO2 injection process. The proposed methodology is based on the development of a sequential coupling between a multiphase fluid flow (TOUGH2) and a hydromechanical calculation code (Code_Aster) that enables us to perform coupled hydromechanical simulation at a regional scale. The likelihood of different caprock damage mechanisms can then be evaluated based on the results of the coupled simulations. A scenario based approach is proposed to take into account the effect of the uncertainty of model parameters on damage likelihood. The developed methodology is applied for the caprock failure analysis of deep aquifer of the Dogger formation in the context of the Paris basin multilayered geological system as a demonstration example. The simulation is carried out at a regional scale (100 km) considering an industrial mass injection rate of CO2 of 10 Mt/y. The assessment of the stress state after 10 years of injection is conducted through the developed sequential coupling. Two failure mechanisms have been taken into account, namely the tensile fracturing and the shear slip reactivation of pre-existing fractures. To deal with the large uncertainties due to sparse data on the layer formations, a scenariobased strategy is undertaken. It consists in defining a first reference modelling scenario considering the mean values of the hydromechanical properties for each layer. A sensitivity analysis is then carried out and shows the importance of both the initial stress state and the reservoir hydraulic properties on the caprock failure tendency. On this basis, a second scenario denoted “critical” is defined so that the most influential model parameters are taken in their worst configuration. None of these failure criteria is activated for the considered conditions. At a phenomenological level, this study points out three key aspects for risk management. The maximum overpressure is reached rapidly after a couple of years, the lateral extension of the “overpressurized” zone induced by the injection is very large (> 50 km) and the most critical zone is the injection near zone (distance < 100 m) at the interface between the caprock and the reservoir layer.
机译:这项工作提出了大规模流体力学模拟的数值策略,以评估CO2注射过程中载体形成损伤风险。所提出的方法基于开发多相流体流量(坚韧2)与流体机械计算代码(Code_aster)之间的顺序耦合,使我们能够以区域尺度执行耦合的流体力学模拟。然后可以基于耦合模拟的结果来评估不同支架损伤机制的可能性。提出了一种基于场景的方法,以考虑模型参数不确定性对损坏可能性的影响。在巴黎盆地多层地质系统的背景下,应用开发的方法应用于狗龄地质系统中的狗叶片形成的深含水层。考虑到10mt / y的二氧化碳的工业质量注射速率,模拟在区域尺度(100km)下进行。通过发育的序贯耦合进行10年后的应力状态的评估。已经考虑了两种故障机制,即拉伸压裂和预先存在的骨折的剪切再活化。为了应对由于层形成上的稀疏数据引起的巨大的不确定性,开展了一个场景策略。它包括定义考虑每个层的流体机械性质的平均值的第一参考建模场景。然后进行灵敏度分析,并显示初始应力状态和储层液压性能对谱系破坏趋势的重要性。在此基础上,定义了第二个方案,其表示为“关键”,以便在最糟糕的配置中采取最有影响力的模型参数。对于所考虑的条件,这些故障标准都没有激活。在现象学水平,本研究指出了风险管理的三个关键方面。在几年后迅速达到最大过压,注射诱导的“过压”区域的横向延伸非常大(> 50公里),最关键的区域是注射区域(距离<100米)支架和储存层之间的界面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号