首页> 外文会议>International Conference on Greenhouse Gas Control Technologies >Experimental evaluation of injection pressure and flow rate effects on geological CO2 sequestration using MRI
【24h】

Experimental evaluation of injection pressure and flow rate effects on geological CO2 sequestration using MRI

机译:使用MRI对地质二氧化碳封存的注射压力和流速影响的实验评价

获取原文

摘要

Deep Saline aquifers are promising long-term storage sites for CO2 emissions. The injection pressure is one of major factor that determines CO2 migration phase equilibrium, and the flow rate influences the injectivity behavior and plume migration. However, data and knowledge of the injection pressure and the variation of velocity in displacement process are scarce. In this paper, we describe a set of laboratory tests on two-phase flow drainage of CO2 and brine. Fundamental characteristics such as the CO2 front, the breakthrough time and sweep efficiency, residual water saturation, due to the injection pressure and rate of displacement fluid was explored. The measurement is conducted at 40 °C under two different pressure conditions and four CO2 injection rate, representative of a CO2 storage operation. Magnetic resonance imaging (MRI) technique was used to observe pore-scale events in drainage process. After the injection of 3-5PV CO2, saturation of CO2 keeps constant indicating that the rest part remains inaccessible. The CO2 saturation at the last time for 8MPa is higher than 6MPa. Residual saturation and breakthrough time of different injection rate displacement procedures are different. The packed porous media is not perfectly homogeneous, so the CO2 run through the high permeability regions vertically in a short period. With CO2 injection, the brine saturation decreased gradually from the inlet of the bead-pack core, and the MRI image turned into dark gradually. The CO2 front proceeding in the porous media could be measured clearly, we can find CO2 "channeling" phenomena obviously in the case of gaseous CO2 displacement due to the difference of fluid viscosities and densities, and it can be seen from the profiles of 76 and 80 min. This phenomenon causes premature breakthrough of the CO2 to occur, thereby reducing the displacement efficiency of the water. And yet, the piston-like displacement occurred in the supercritical CO2 drainage experiment, due to the viscosity of supercritical CO2 is higher than gaseous CO2. According to capillary number definition, the Darcy velocity U keep invariable with constant CO2 flow rate, and the non-wetting phase (CO2) viscosity increase with the injection pressure increase. In other words, the displacement process capillary number of 8MPa is higher than 6MPa. The sweep efficiency in 8MPa is slightly higher compared to the CO2 injection in 6MPa. Therefore, supercritical CO2 displacement process is more practical than gaseous CO2 displacement process. The sweep efficiency will decrease for higher capillary number. At a small CO2 injection rate, the breakthrough time is long. A longer break through time resulted higher sweep efficiency. The CO2 flooding increases the displacement efficiency by raising the capillary number due to the relatively low interfacial tension values between the brine and the injected CO2. At high injection rate, especially 0.8 ml/min, the MRI image near the outlet region remain at high signal intensity in a relatively long time, indicating that the CO2-brine distribution does not change, since the displacement is steady. The sweep efficiency decreases as the injection flow rate increase, but the decrease extent reduces gradually. This means there is a critical capillary number for CO2 sequestration, which results in minimum sweep efficiency. In future experimental work, we will go into more detail about the critical capillary number. Within the capillary number scope of 10~(-9) to 10~(-10), higher capillary number will decrease the CO2 sweep efficiency.
机译:深盐含水层是有关二氧化碳排放的长期存储场所。注射压力是确定CO2迁移相平衡的主要因素之一,流速影响了喷射行为和羽流迁移。然而,进气压力的数据和知识和位移过程中的速度变化是稀缺的。在本文中,我们描述了一套对二氧化碳和盐水的两相流量排水的实验室测试。探讨了由于注射压力和排量流体速率,诸如CO2前沿,突破时间和扫效效率,突破水饱和度等基本特征。测量在两个不同的压力条件下在40℃和四个CO 2注射速率下进行,代表CO 2存储操作。磁共振成像(MRI)技术用于观察排水过程中的孔隙率事件。在注射3-5PV CO 2之后,CO2的饱和保持恒定,表明其余部分保持无法进入。 8MPa最后一次的CO2饱和度高于6MPa。不同喷射率位移程序的剩余饱和度和突破时间是不同的。包装多孔介质不完全均匀,因此CO2在短时间内垂直地垂直贯穿高渗透区域。通过CO 2注射,盐水饱和度从珠粒包装核心的入口逐渐降低,并且MRI图像逐渐变为暗。多孔介质中的CO 2前进过程可以清楚地测量,我们可以在气态CO 2位移由于流体粘度和密度的差异的情况下显着地发现CO 2“通道”现象,并且可以从76的曲线看出它80分钟。这种现象导致CO 2发生过早突破,从而降低了水的位移效率。然而,由于超临界CO2引流实验中发生活塞状位移,由于超临界CO2的粘度高于气态CO 2。根据毛细数定义,达西速度U与恒定的CO 2流量保持不变,并且不润湿相(CO2)粘度随喷射压力的增加而增加。换句话说,位移过程毛细管数为8MPa高于6MPa。与6MPa中的CO 2注射相比,8MPa中的扫描效率略高。因此,超临界CO 2位移过程比气态CO 2位移过程更实用。扫描效率将降低毛细数量。在小二氧化碳注射率下,突破时间长。越来越长的时间导致较高的扫描效率。由于盐水和注入的CO2之间的相对低的界面张力值,CO2泛滥通过提高毛细管数来增加位移效率。在高注射率下,特别是0.8ml / min,出口区域附近的MRI图像在相对长的时间内保持高信号强度,表明CO2-盐水分布不会改变,因为位移稳定。随着注射流量的增加,扫描效率降低,但减小程度逐渐减少。这意味着CO2封存存在临界毛细数,这导致最小扫描效率。在未来的实验工作中,我们将详细介绍关键毛细血管数。在10〜(-9)至10〜(-10)的毛细管数范围内,较高的毛细数将降低CO 2扫描效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号