首页> 外文会议>International Conference on Greenhouse Gas Control Technologies >Laboratory batch experiments and geoehemical modelling of water-rock-super critical CO2 reactions in Gulf of Mexico Miocene rocks: Implications for future CCS projects
【24h】

Laboratory batch experiments and geoehemical modelling of water-rock-super critical CO2 reactions in Gulf of Mexico Miocene rocks: Implications for future CCS projects

机译:墨西哥中世纪岩岩岩岩超关键二氧化碳反应的实验室批量实验与地理学建模:未来CCS项目的影响

获取原文

摘要

Storage of CO2 in deep saline formations in a super critical liquid state has been proposed as a way to mitigate the effects of increased atmospheric CO2 levels. The ultimate fate of the CO2 after injection requires an understanding of mineral dissolution/precipitation reactions occurring between the target formation minerals and the existing formation brines at formation temperatures and pressures in the presence of supercritical CO2. In this experiment core material taken from a Miocene age Gulf of Mexico core from a depth of 2806 m was reacted with synthetic brine at varied but high temperatures and pressures in the presence of super critical CO2. XRD and SEM analyses were conducted before and after reaction to identify dissolution of existing minerals and precipitation of authigenic mineral phases. Periodic geoehemical analysis of the reaction fluid was used to quantify changes in the elemental composition of the reaction fluid which helps identify potential mineral dissolution/precipitation reactions. Reaction brine (140 ml) was loaded into a high pressure reaction vessel with 8 g of core sample. Experimental temperature was set to 70, 100 or 130°C;; pressure was set to 200 or 300 bar, and solution chemistry was changed from de-ionized (DI) water to a 1.88 M NaCl solution. After the introduction of CO2 the Ca and alkalinity concentrations showed the largest increases, Ca concentrations increased ~1000 ppm, suggesting carbonate dissolution was the dominant geoehemical reaction. Final equilibrium Ca concentrations increased with decreasing reaction temperature because of greater CO2 solubility. In addition, the reactions with the NaCl brine produced higher equilibrium Ca concentrations than the DI water experiment, likely due to the decrease in ion activity with higher ionic strength solutions. Pressure change from 200 to 300 bar did not significantly alter reaction rates. Unlike Ca, silicate dissolution reactions appear to be positively correlated with reaction temperature. Silicate dissolution rates are 2 orders of magnitude slower than carbonate dissolution rates. In this study, PHREEQC was used to simulate brine-rock-CO2 interactions in batch experiments under high pressure and high temperature. Generally, the geochemical models reproduced concentration of Ca, Mg, K and Si seen in the water rock experiments suggesting that carbonate and K-feldspar dissolution are the dominant geochemical reactions. In addition, geochemical models show that dawsonite precipitates in higher salinity (higher Na+ concentration) experiments.
机译:CO2在深部咸水层的超临界液体状态的存储已经被提议作为一种方法来缓解大气CO2浓度升高水平的影响。注射后的CO 2的最终命运需要在形成的温度和压力在超临界CO 2的存在下,目标地层矿物质和现有的地层盐水之间存在的矿物溶解/沉淀反应的理解。在从中新世墨西哥湾芯的从2806米的深度采取了这种实验的芯材用在超临界CO 2的存在变化,但高温和高压下合成盐水反应。 XRD和SEM分析之前和反应之后进行,以确定现有的矿物和自生矿物相的析出的溶解。反应流体的周期性geoehemical分析用于定量在反应流体中,这有助于发现潜在的矿物溶解/沉淀反应的元素组成的变化。反应盐水(140毫升)的混合物装入高压反应容器中加入8g芯样品。实验温度设定为70,100或130℃;;压力被设置为200或300巴,和溶液化学从去离子(DI)水改变为1.88摩尔NaCl溶液。引入CO 2的Ca和碱度浓度显示最大的增加之后,钙浓度增加〜1000ppm的,提示碳酸盐溶解主导geoehemical反应。最终平衡钙浓度随因为较大的CO 2溶解度的反应温度升高。此外,与NaCl的盐水的反应中产生的更高的平衡钙浓度高于DI水的实验中,有可能是由于在离子活性的降低具有较高离子强度的溶液。从200到300巴压力的变化并没有显著ALTER反应速率。不同于钙,硅酸盐溶解反应似乎随着反应温度正相关。硅酸盐溶出率是2个数量级比碳酸盐溶解速度慢。在这项研究中,PHREEQC被用来在高压和高温下在间歇实验模拟盐水岩-CO2的相互作用。通常,地球化学模型再现水中岩石实验表明碳酸酯和钾长石溶解是主要的地球化学反应看出钙,镁,K和Si的浓度。此外,地球化学模型显示在较高盐度(更高的Na +浓度)的实验片钠铝石沉淀。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号