首页> 外文会议>International Conference on Greenhouse Gas Control Technologies >CO2 as a fracturing fluid: Potential for commercial-scale shale gas production and CO2 sequestration
【24h】

CO2 as a fracturing fluid: Potential for commercial-scale shale gas production and CO2 sequestration

机译:二氧化碳作为压裂液:商业规模页岩气产量和CO2封存的潜力

获取原文

摘要

Hydraulic fracturing and horizontal drilling has led to a shale gas energy boom in the United States. In addition to decreasing domestic energy costs, shale gas production has substantially reduced domestic CO2 emissions, largely due to natural gas displacing coal-fired electricity generation. Water is the principal component of working fluids used for commercial hydraulic fracturing, along with other constituent chemicals and substances to enhance fracture propagation/longevity and propping agent (e.g., sand) transport. Industry, policy makers, and other stakeholders are aware of potential disadvantages of aqueous fracturing fluids, including water scarcity, environmental impact from constituent chemicals, and poor fracture performance. To address these problems we are undertaking a study using supercritical CO2 as a replacement working fluid. Supercritical CO2 has many potential benefits and drawbacks compared with water as a fracturing fluid; it may increase gas production through several coupled processes including enhanced fracturing, reduced flow blocking, and miscibility with in-place hydrocarbons, as well as challenges such as economics, resource availability, and assurances that the CO2 is safely sequestered in the target formation. Through a combination of basic experiments, modelling, and historical research, we formally address these issues. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
机译:液压压裂和水平钻井导致美国的页岩气能繁荣。除了降低国内能源成本外,页岩天然气产量大幅降低了国内二氧化碳排放,主要是由于天然气燃煤发电。水是用于商业液压压裂的工作流体的主要成分,以及其他组成化学品和物质,以增强骨折繁殖/寿命和预防剂(例如,沙子)运输。行业,政策制定者和其他利益攸关方意识到含水水污液的潜在缺点,包括水资源稀缺,来自组成化学品的环境影响以及骨折性能差。为了解决这些问题,我们正在使用超临界二氧化碳作为替代工作流体进行研究。与水作为压裂液相比,超临界CO2具有许多潜在的益处和缺点;它可以通过包括增强的压裂,减少的流量阻塞和与原始烃的混溶性的耦合方法增加气体产生,以及诸如经济学,资源可用性和保证的挑战,即CO 2在目标形成中安全地隔离。通过基本实验,建模和历史研究的组合,我们正式解决了这些问题。由elsevier有限公司发布这是CC By-NC-ND许可下的开放式访问文章

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号