【24h】

Systems biology and malaria

机译:系统生物学与疟疾

获取原文

摘要

Malaria is the cause of significant global morbidity and mortality with 300-500 million cases annually. Despite its disease burden relatively little is known about the molecular biology of the pathogen that causes malaria. For example, the completion of the genome sequence of Plasmodium falciparum, the species responsible for the most severe form of human malaria revealed that only 35% of the genes code for proteins with an identifiable function. In addition, little is known about how transcription and translation are regulated. The absence of routine genetic tools for studying Plasmodium parasites suggests that these numbers are unlikely to change quickly if conventional, serial, biological methods are used to study the parasite. We are using high-density oligonucleotide arrays and informatic methods to study the genome of the malaria parasite with the goals of understanding how expression is regulated, functionally cataloging the genome, discovering allelic variation and identifying new therapeutic targets. We have shown that genes with highly correlated levels and temporal patterns of expression are often involved in similar functions or cellular processes suggesting that expression profiling can be used to rapidly predict function. In addition we find that there is good correlation between protein levels and transcript levels, suggesting that regulation of expression occurs transcriptionally. Analysis of whole-genome transcription patterns reveals that the chromosome is organized into regions that are transcriptionally active and transcriptionally silent in the intraerythrocytic stage of the parasite's lifecycle. Thus, both the timing and the relative level of transcription in the parasite is organized into position-dependent domains suggesting that transcription may be regulated at least partially at the level of chromatin structure.
机译:疟疾是造成全球高发病率和高死亡率的原因,每年有300-500百万例。尽管其疾病负担很大,但对引起疟疾的病原体的分子生物学知之甚少。例如,恶性疟原虫(负责人类疟疾最严重形式的物种)的基因组序列的完成显示,只有35%的基因编码具有可识别功能的蛋白质。另外,关于转录和翻译是如何调控的还知之甚少。缺乏用于研究疟原虫寄生虫的常规遗传工具表明,如果使用常规的,连续的生物学方法研究寄生虫,这些数字不太可能迅速改变。我们正在使用高密度寡核苷酸阵列和信息学方法来研究疟原虫的基因组,以期了解表达的调控方式,对基因组进行功能分类,发现等位基因变异并确定新的治疗靶标。我们已经表明,与表达水平和时间模式高度相关的基因通常参与相似的功能或细胞过程,这表明表达谱可用于快速预测功能。另外,我们发现蛋白质水平和转录水平之间具有良好的相关性,这表明表达的调节是转录发生的。对全基因组转录模式的分析表明,该染色体在寄生虫生命周期的红细胞内阶段组织成转录活跃且转录沉默的区域。因此,寄生虫中转录的时间和相对水平都组织成位置依赖性结构域,这表明转录可以至少部分地在染色质结构水平上受到调节。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号