首页> 外文会议>AIAA Plasmadynamics and Lasers Conference >Oxygen Atom Measurements in a Nanosecond Pulse Discharge by Two Photon Absorption Laser Induced Fluorescence1
【24h】

Oxygen Atom Measurements in a Nanosecond Pulse Discharge by Two Photon Absorption Laser Induced Fluorescence1

机译:通过两个光子吸收激光诱导荧光1的纳秒脉冲放电中的氧原子测量

获取原文

摘要

Two Photon Absorption Laser Induced Fluorescence (TALIF) is used to measure time-resolved absolute atomic oxygen concentrations in nitrogen-oxygen nanosecond pulse plasmas. The plasma is initiated using a 40-50 kV peak voltage, 5 nsec duration pulses generated at a low pulse repetition rate, 10 Hz, in order to study the nascent kinetics of a single pulse discharge event at a low temperature. Relative atomic oxygen concentration data is put on an absolute scale using a calibration method in which the O atom signal intensity is compared to reference TALIF spectra of xenon, obtained using identical laser beam focusing, fluorescence collection, fluorescence spectral filtering, and photomultiplier detector gain. Calibrated TALIF spectra show peak atomic oxygen concentrations generated by a single pulse in N2/O2 mixtures in the range (1-3)TO14 cm3 at total pressures of P=40-60 torr. This corresponds to an O atom mole fraction of (0.5-1.5)-10"4. The peak O atom density in air at P=60 torr, -3-1014 cm"3, assuming 5.2 eV energy cost per dissociate O2 molecule, would require ~1 mJ energy per pulse for uniform dissociation within the entire pulsed discharge volume. The pulse energy coupled to the load, estimated from the high voltage probe measurements, is about 2 mJ/pulse. The O atom decay in air occurs on a time scale of-1-2 msec. The results of kinetic modeling calculations, which are in satisfactory agreement with the experimental data, identify key processes of O atom generation and decay in the nanosecond pulse plasma. Future work will focus on performing O atom and flow temperature measurements operating the plasma generator in the pulse-burst mode, to detect the accumulation of atomic oxygen concentration in the flowing plasma reactor and plasma chemical reactions with hydrocarbon fuel species.
机译:两个光子吸收激光诱导荧光(缩略图)用于测量氮氧纳秒脉冲等离子体中的时间分辨绝对原子氧浓度。使用40-50kV峰值电压,5个以低脉冲重复率,10Hz产生的NSEC持续时间脉冲开始等离子体,以便在低温下研究单个脉冲放电事件的新生动力学。使用校准方法将相对原子氧浓度数据放置在绝对尺度上,其中将O原子信号强度与氙的参考塔,使用相同的激光束聚焦,荧光收集,荧光光谱滤波和光电倍增器检测器增益获得。校准的TALIF光谱显示在P = 40-60托的总压力范围内(1-3)至14cm 3的N2 / O 2混合物中的单脉冲产生的峰原子氧浓度。这对应于(0.5-1.5)-10“4的O原子摩尔分数。P = 60 Torr,-3-1014cm”3的空气中的峰值O原子密度假设每分离O2分子的5.2 EV能量成本,每次脉冲需要〜1 MJ能量,以在整个脉冲放电体积内均匀解离。耦合到负载的脉冲能量,从高压探针测量估计为约2 MJ /脉冲。空气中的O原子衰减发生在-1-2毫秒的时间等级上。动力学建模计算结果与实验数据令人满意的协议,识别纳秒脉冲等离子体中的O原子产生和衰减的关键过程。将来的工作将集中于执行脉冲突发模式下进行等离子体发生器的O原子和流量温度测量,以检测流动的等离子体反应器中原子氧浓度的累积和碳氢化合物燃料物种的血浆化学反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号