首页> 外文会议>American Society for Composites technical conference >Micromechanics Model of the FRC Subject to Heating High-Velocity Impact Using Continuum Damage Mechanics with Adiabatic Heating
【24h】

Micromechanics Model of the FRC Subject to Heating High-Velocity Impact Using Continuum Damage Mechanics with Adiabatic Heating

机译:FRC的微机械模型在加热高速冲击的情况下,使用连续造成的绝热加热

获取原文

摘要

The popularities of the composites are increasing growth in manufacturing, with numerous advanced applications ranging from military and civil vehicles to decorative architectural facade. Experiments show that adiabatic heating becomes more noticeable at high strain rate deformation, causing the stress-strain slope to become negative. However, the rate-dependent micromechanics model in Z. Li et al. 2016 lacks the interpreted connection between energy dissipation and adiabatic temperature rise. This work aims to develop a thermal-mechanical model incorporating material heterogeneities to study multi-physics damage and failure of S-glass fiber reinforced epoxy composites under high-velocity impact.This study first established a rate-dependent nonlocal continuum damage model (CDM) with adiabatic heating for composite matrix, e.g., DER 353 Epoxy. A Split-Hopkinson pressure bar (SHPB) experiment from literature are rebuilt in FEM simulation to validates this material model. The research proves that thermal softening became more prominent as the strain rate increases. The new model is then integrated into a micromechanical analysis of composites representative volume elements (RVEs) to study the interaction between stress wave propagation and crack growth in composites RVE subjected to high strain rate deformation. Deformation and failure response of the RVE models exhibiting fiber and matrix damage as well as cohesive interfacial crack. This work is an extension of a broader multiscale work examining glass fiber reinforced composites under high strain rates.
机译:复合材料的流行程度在制造业不断增长,拥有众多先进的应用范围从军事和民用车辆,建筑装饰门面。实验结果表明,绝热加热变得在高应变速率变形更明显,从而引起的应力 - 应变斜率变成负的。然而,率相关细观在Z. Li等模型。 2016缺乏能量耗散和绝热温升的解释连接。这个工作的目的是开发结合材料的异质性的研究S-玻璃纤维的多物理损坏和故障的热 - 机械模型增强下高速冲击环氧复合材料。本研究首先建立的速率依赖性非局部连续损伤模型(CDM)与绝热加热复合基质,例如,DER 353环氧树脂。从文献的分裂霍普金森压力棒(SHPB)实验被重建在FEM仿真验证了该材料模型。研究证明,热软化成为本应变率的增加更为突出。然后,新的模型被集成到复合材料的微机械分析代表体积元素(RVEs)研究应力波的传播和在复合材料中的裂纹扩展的相互作用RVE经受高应变速率变形。变形和RVE模型表现出纤维和基体的损伤以及凝聚力的界面裂纹的失败响应。这项工作是在高应变率更广泛的多尺度工作检查玻璃纤维增​​强复合材料的延伸。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号